The Ordovician System in the Famatina Belt: Depositional and Tectonic Evolution

M. Gabriela MÁNGANO1, Ricardo A. ASTINI2, Luis A. BUATOIS1 and Federico DÁVILA2

1 Insugeo, CONICET, Casilla de correo 1 (CC), 4000 San Miguel de Tucumán, Argentina. E-mail: ichnolog@infovia.com.ar

2 Cátedra de Estratigrafía y Geología Histórica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, CONICET, Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina. E-mail: raastini@com.uncor.edu

Abstract. THE ORDOVICIAN SYSTEM IN THE FAMATINA BELT: DEPOSITIONAL AND TECTONIC EVOLUTION. The Ordovician rocks of Famatina exceed 3000 m thick and include Late Cambrian to Tremadocian carbonates and siliciclastic rocks, Arenigian to Llanvirnian? volcano-sedimentary deposits, and several Early Ordovician arc-related intrusives, allowing to reconstruct a relatively complex continental margin history. Analysis of the Ordovician rocks in the Famatina Belt provides information on the tectonic setting of the western margin of Gondwana during the early Paleozoic and the dynamics of peri-Iapetus volcanic arc-related depositional systems. Although there is agreement on the active plate margin emplacement of the Famatina Basin, doubts still persist regarding its more precise tectonic setting. Integration of petrographic and sedimentologic evidence suggests an arc formed on continental crust, rather than oceanic crust. While some authors considered the Famatina belt as part of the western Gondwana margin, recent studies suggest that Famatina may represent an independent terrane based on paleomagnetic and paleontologic data. Integration of information from the different areas of the basin sheds light on the depositional and tectonic evolution of the Famatina Basin. Four evolutionary stages are recognized: (1) Late Cambrian to early Tremadocian, (2) late Tremadocian, (3) early Arenigian and (4) middle Arenigian to Llanvirnian? The first stage represents the onset of sedimentation within the Famatina Basin after a period of quiescence and subsidence of folded Pampean age basement rocks. The transition from shelf deposits to blackshales in the early Tremadocian suggests gradual deepening related to a relative sea-level rise and consequent drowning. The presence of late Tremadocian silicified sandstones with volcanogenic detritus in rocks of the second stage represents the first evidence of volcanism recorded in the Famatina Belt and can be correlated with the onset of volcanism in the Puna region. The early Arenigian phase is characterized by relatively deep-marine deposits that accumulated in a series of depocenters formed by extensional tectonics within an intra-arc basin. Explosive volcanism is mainly documented by accretionary lapilli in sediment gravity flow and pyroclastic flow deposits. During the forth stage (middle Arenigian to Llanvirnian?) sedimentation accumulated in a narrow, highgradient shelf along a volcanic arc that was close to sea level for most of its history. The volcanic rocks recorded at the top of the lower Paleozoic succession in the Cerro Morado Group and Las Planchadas Formation reveal a peak in volcanic activity by the late Arenigian to probably Llanvirnian. Paleontologic evidence indicates northsouth diachronism, suggesting facies changes in a relatively complex architectural mosaic as is usually the case in volcanic arc settings.

Resumen: EL SISTEMA ORDOVÍCICO EN EL SISTEMADEL FAMATINA: EVOLUCIÓN DEPOSITACIONAL Y TECTÓNICA. Las rocas ordovícicas del Famatina superan los 3000 m de espesor e incluyen depósitos siliciclásticos y carbonáticos del Cámbrico Tardío y Tremadociano, depósitos volcano-sedimentarios del Arenigiano a Llanvirniano? y numerosos intrusivos de arco del Ordovícico Temprano, permitiendo reconstruir una compleja historia de margen continental. El análisis de estas rocas ordovícicas en el Sistema del Famatina proporciona información sobre el marco tectónico del margen occidental del Gondwana durante el Paleozoico temprano y la dinámica de sistemas depositacionales relacionados con arcos volcánicos del peri-Iapetus. Si bien hay acuerdo sobre el emplazamiento de la cuenca del Famatina en un margen activo, aún persisten dudas con respecto a su marco tectónico preciso.

La integración de evidencias petrográficas y sedimentológicas sugiere un arco formado sobre corteza continental, en lugar de oceánica. Mientras algunos autores consideran al Sistema de Famatina como parte del margen del Gondwana Occidental, recientes estudios basados en datos paleomagnéticos y paleontológicos sugieren que Famatina podría representar un terrane independiente. La integración de información proveniente de las diferentes áreas de la cuenca ayuda en nuestro entendimiento de la evolución depositacional y tectónica de la cuenca de Famatina. Se han reconocido cuatro estadíos evolutivos: (1) Cámbrico Tardío a Tremadociano temprano, (2) Tremadociano tardío, (3) Arenigiano temprano y (4) Arenigiano medio a Llanvirniano? El primer estadío representa el inicio de la sedimentación en la cuenca de Famatina con posterioridad a un período de quietud y subsidencia de las rocas plegadas de basamento de edad Pampeana. La transición de depósitos de plataforma a lutitas negras en el Tremadociano temprano sugiere una profundización gradual relacionada a un ascenso relativo del nivel del mar y el consecuente ahogo. La presencia de areniscas silicificadas con detritos volcanigénicos en rocas del Tremadociano tardío del segundo estadío representa la primera evidencia de volcanismo registrada en el Sistema de Famatina y puede ser corrrelacionada con el inicio del volcanismo en la región de Puna. La fase del Arenigiano temprano está caracterizada por depósitos marinos relativamente profundos que se acumularon en una serie de depocentros formados por tectónica extensional dentro de una cuenca de intra-arco. El volcanismo explosivo está principalmente documentado por la presencia de lapilli acrecional en depósitos de flujos gravitatorios de sedimentos y por flujos piroclásticos. Durante el cuarto estaído (Arenigiano medio a ?Llanvirniano) la sedimentación se acumuló en plataformas angostas de alto gradiente a lo largo de un arco volcánico desarrollado cerca del nivel del mar durante gran parte de su historia. Las rocas volcánicas registradas en el tope de la sucesión del Paleozoico inferior en el Grupo Cerro Morado y la Formación Las Planchadas revela un pico en la actividad volcáncia durante el Arenigiano tardío a probablemente Llanvirniano. La evidencia paleontológica indica un diacronismo norte-sur, sugiriendo cambios de facies en un mosaico arquitectural relativamente complejo, como es habitual en ambientes de arco volcánico.

Key words: Famatina Belt. Ordovician. Volcanic arc. Depositional evolution. Tectonics.

Palabras clave: Sistema de Famatina. Ordovícico. Arco volcánico. Evolución depositacional. Tectónica.

Introduction

The Famatina Belt (Famatina System sensu Petersen and Leanza, 1953: 319) is located in the La Rioja and Catamarca Provinces, approximately between 27º and 31º S latitude, in the broken foreland of the south Central Andes, northwest Argentina (Figs. 1, 2). The Famatina Belt embraces several mountain ranges that at present separate the northern extent of the Argentinean Precordillera to the west and the Sierras Pampeanas region to the east. A probably Precambrian low-grade metamorphic basement covered by early and late Paleozoic and Cenozoic rocks are exposed in the Famatina Range. The Ordovician rocks of Famatina exceed 3000 m thick and include Late Cambrian to Tremadocian carbonates and siliciclastic rocks, Arenigian to Llanvirnian? volcano-sedimentary deposits, and several Early Ordovician arc-related intrusives, allowing to reconstruct a relatively complex continental margin history.

The presence of Paleozoic rocks in this region has been known since the pioneer work of German geologists in the late nineteenth and early twentieth centuries, most notably Kayser (1876), Brackebush (1891), Penck (1920) and Bodenbender (1916). After a gap with few studies, subsequent work in the late twentieth century provided additional information on the basin’s paleontological content and the stratigraphic relations between the different early Paleozoic units (Turner, 1958, 1960, 1964, 1967; Maisonave, 1973; Levy and Nullo, 1973, 1980; Aceñolaza et al., 1976; Aceñolaza and Durand, 1984; Aceñolaza and Toselli, 1977, 1988). However, it was not until the nineties that the first detailed sedimentologic, stratigraphic and systematic paleontologic studies were published, following renewed interest in the Famatina Basin (Aceñolaza and Rábano, 1990; Mángano and Buatois, 1990a,b, 1992a,b,c, 1994a,b, 1995, 1996a,b, 1997; Esteban, 1992, 1993, 1994, 1996; Clemens, 1993; Sánchez and Babin, 1993, 1994; Vaccari et al., 1993; Vaccari and Waisfeld, 1994; Albanesi and Vaccari, 1994; Benedetto, 1994, 1998, 2003; Tortello and Esteban, 1995, 1997, 1999; Mángano et al., 1996; Astini and Benedetto, 1996; Toro, 1997, 1999; Toro and Brussa, 1997; Esteban and Gutierrez- Marco, 1997; Esteban and Rigby, 1998; Martino and Astini, 1998; Astini, 1998, 1999a,b, 2001a,b; Albanesi et al., 1999; Esteban et al., 1999; Aceñolaza and Gutierrez-Marco, 2000; Astini and Dávila, 2000, 2002; Sánchez, 2001; Conci et al., 2001; Dávila et al., 2003). Additionally, the nature of the Ordovician igneous rocks and their geochemistry have been studied by various authors (Toselli et al., 1990, 1993, 1996; Toselli, 1992; Mannheim, 1993a,b; Cisterna and Toselli, 1996; Mannheim and Miller, 1996; Cisterna, 2001), whereas new isotope and geochronological data have been recently published by Pankhurst et al. (1998, 2000) and Rapela et al. (1999, 2001), who addressed the nature and evolution of the igneous suites in the context of the Gondwana active continental margin.

Several synthesis have also been published in recent years (Aceñolaza et al., 1996, Mángano and Buatois, 1996b; Saavedra et al., 1998; Esteban et al., 1999; Astini, 1999b).

Fieldwork in the Famatina Basin is complicated by difficulties in accessing most of the outcrops, rough topography and by the fact that outcrops are commonly disconnected, preventing the establishment of sound stratigraphic relations. Research was undertaken independently in separate regions and as a result different sets of data must be integrated. In this chapter we do so by providing a summary of our present understanding of the depositional and tectonic evolution of the Famatina Basin. Analysis of the basin is of importance toward understanding the tectonic evolution of western Argentina during the early Paleozoic, and toward gathering valuable information on the dynamics of volcanic arc-related depositional systems.

Stratigraphic framework and correlations along the Famatina Belt

The following units represent the lower Paleozoic succession in the Famatina Belt: Volcancito, Suri, Molles, Portezuelo de Las Minitas, La Alumbrera, El Portillo, La Escondida, Chuschín and Las Planchadas Formations (Fig. 3). These units are bracketed between Late Cambrian to probably Llanvirnian rocks and were grouped on the basis of different criteria. Turner (1964) included the Suri and Molles Formations within the Famatina Group. Subsequently, Aceñolaza and Toselli (1981) proposed the more embracing Cachiyuyo Group to include these two formations together with the underlying Volcancito and Portezuelo de Las Minitas Formations, and the overlying Cerro Morado and Las Planchadas Formations. However, priority principles and recognition of unconformities within the lower Paleozoic succession supports the use of the more restrictive Famatina Group (Astini, 1998; Astini and Dávila, 2002; Dávila et al., 2003). The stratigraphic relationship between the Famatina Group and the underlying formations awaits further study.

The early Paleozoic volcano-sedimentary succession unconformably overlies folded low-grade metasedimentary rocks of the Negro Peinado Formation (Turner, 1960; Toselli, 1978; De Alba, 1979; Astini, 2001a). The lowermost unit is the Volcancito Formation, composed of about 590 m of mudstone and minor interbedded sandstone (Turner, 1964), which has been divided into three members (Esteban, 1998; Esteban et al., 1999). The lower and middle members are exposed in the Volcancito River and Peña Negra area, while the upper member outcrops in the Bordo Atravesado area (Esteban, 1998). The lower member is 170 m thick and consists of graded and laminated sandy limestone and marl, commonly with cross-bedding and microhummocky cross-stratification, calcareous sandstone and laminated black shale. Major calcareous breccias are well exposed near the base (Astini and Dávila, 2000) and calcareous trilobite-rich coquinas are present throughout the sequence (Esteban, 1998; Astini, 2001a,b). It ranges in age from the Late Cambrian to the early early Tremadocian (Tortello and Esteban, 1999; Albanesi et al., 1999). This member is interpreted as having been deposited in a shallow-shelf environment; the carbonate-rich strata indicate low-latitude warm waters (Astini, 2001a), representing similar environments than those peripheral to Laurentia (Albanesi et al., 2000). Carbonate breccias suggest coeval instability. The middle member is at least 260 m thick and is made up mostly of black shale with minor, thin-bedded interbedded massive mudstone (Esteban, 1998). The age of this member is constrained by graptolite biostratigraphy (Esteban and Gutierrez-Marco, 1997; Esteban et al., 1999) between middle to late early Tremadocian.

Rhabdinoporids (including Rhabdinopora flabelliformis) and anisograptids are present throughout this interval. The middle member has been deposited in a relatively deep-water environment with a well-stratified water column throughout which fine-grained settling took place in anoxic bottom conditions (Esteban, 1998). Lack of benthic faunas and trace fossils supports an oxygen-depleted environment. The Upper Member is 160 m thick and contains massive and laminated mudstone with a few thin intercalations of massive silty sandstone, sandstone with microhummocky crossstratification and silicified tuff (Esteban, 1993, 1998). The trilobite fauna suggests a late late Tremadocian to early Arenigian age (Esteban et al., 1999). Preliminary conodont information seems to support a late late Tremadocian age (Albanesi, personal communication, in Esteban et al., 1999).

This member outcrops in a separate area (Bordo Atravesado) to the south of the Rio Volcancito region (Fig. 2). The lack of outcrop continuity and the stratigraphic gap between this member and the middle member of the Volcancito Formation in its type area suggest that the so-called upper member of the Volcancito Formation is best regarded as a separate formation, the Bordo Atravesado Formation (Astini, in press). This unit represents deposition in an outer-shelf environment and records the onset of Ordovician volcanism (Esteban, 1993, 1998). Similar facies described in the nearby Chuschín region in the western side of the present Famatina Range by Mannheim (1993a) were included in the Chuschín Formation and can be tentatively correlated with the unit exposed in Bordo Atravesado.

Little is known about the Portezuelo de las Minitas and the La Alumbrera Formations, which might be assigned to late late Tremadocian? to early Arenigian age (Aceñolaza et al., 1976; Toro, 1997, 1999; Aceñolaza and Gutierrez-Marco, 2000; Toro, personal communication, 2002). The Portezuelo de las Minitas Formation consists of about 1500 m of conglomerate, sandstone and mudstone interbedded with volcanic rocks (Lavandaio, 1973) and, from the available descriptions, it may be coeval with the lower part of the Suri Formation. The La Alumbrera Formation is approximately 120 m thick and consists of evenly laminated pyrite-rich black shale with scarce thin interbedded silicified sandstone (Toro, 1997). In its upper half it yields a graptolite association from the Tetragraptus phyllograptoides and T. akzharensis Zones (Toro, 1999). However, abundant clonograptids and possible adelograptids occur in its lower interval (Toro, personal communication, 2002), suggesting a stratigraphic position below the lowest beds of the Suri Formation. The Tremadocian-Arenigian boundary is probably present within this interval. The thin interbedded silicified sandstones are possibly tuffs, suggesting a tentative correlation with the unit exposed at Bordo Atravesado. Its stratigraphic position below Baltograptus deflexus may also support a correlation with the volcanics located at the base of the Suri Formation in central and northern Famatina. The La Alumbrera Formation has been traced into the northern area by Aceñolaza (1978). Although both La Alumbrera and Portezuelo de las Minitas Formations have been poorly studied from a sedimentological viewpoint, their paleontological record seems to indicate a fairly continuous record through the latest Tremadocian to the early Arenigian. Both units most likely represent deposition in a deepwater setting according to their graptolite-rich faunal content.

The Suri Formation, lower unit of the Famatina Group, includes approximately 1300 m of interbedded volcaniclastic and volcanic rocks (Mángano and Buatois, 1994a; Astini, 1998). In the Chaschuil area, the base of the Suri Formation is represented by a strongly altered andesite (Mángano and Buatois, 1997); in Sierra de Famatina this formation also occurs above volcanic rocks, referred to as the Cerro Tocino Volcanics (Astini, 1998; Astini and Dávila, 2002) (Fig. 2). The Suri Formation is divided into three stratigraphic members in the Chaschuil sub-basin: Vuelta de Las Tolas, Loma del Kilómetro and Punta Pétrea (Mángano and Buatois 1994a). Detailed stratigraphic sections and facies characterization of these units in the Chaschuil area were provided by Mángano and Buatois (1990a, 1992a, 1994a, b, 1996a,b, 1997). Astini (1998) recognized similar depositional units in the Sierra de

Famatina area. However, the lowermost unit, consisting of deep-water black shale with interbedded graded tuff, either is not present in the Chashuil area or correlates with the lowermost fine-grained deposits of the Vuelta de Las Tolas Member, representing a lateral facies change. The lower unit of Sierra de Famatina is of early to middle Arenigian age, based on the presence of graptolites of the Baltograptus deflexus and the Didymograptellus bifidus Zones (Toro and Brussa, 1997). The Vuelta de Las Tolas Member, which reaches a thickness of approximately 600 m, consists of interbedded fine-grained deposits and volcanic conglomerate, breccia and sandstone. This unit records deposition on a slope apron flanking the volcanic arc (Mángano and Buatois, 1997). The age of the Vuelta de Las Tolas Member is early Arenigian (Toro and Brussa, 1997). The Vuelta de Las Tolas Member is succeeded upward by the Loma del Kilómetro Member, about 600 m thick, which is composed of mudstone, siltstone and volcaniclastic sandstone. The Loma del Kilómetro Member mostly records episodic processes related to storms and sediment gravity flows in a high gradient shelf adjacent to the volcanic arc (Mángano and Buatois, 1996a). The age of this member is middle Arenigian (Albanesi and Vaccari, 1994; Vaccari and Waisfeld, 1994). The upper unit of the Suri Formation, the Punta Pétrea Member, is 50 m thick and consists of volcaniclastic sandstone, conglomerate and breccia. It records progradation of a volcaniclastic-fan-delta system (Mángano and Buatois, 1994b). Sedimentary dynamics in the Suri Formation were profoundly affected by the contemporaneous eruptive activity of the adjacent volcanic arc. In central Famatina several ignimbrites are represented in the Famatina Group, being particularly abundant in the upper two members described by Astini (1998, 1999a) within the Suri Formation. The Molles Formation is the upper unit of the Famatina Group. It consists of 100 m of red clayey sandstone, interbedded reddish sandy claystone and volcaniclastic sandstone and breccia that conformably overlie the Suri Formation in the Sierra de Famatina area (Turner, 1964; Astini, 1998). Meter-scale silicified tuffs, volcanic breccias and volcanogenic sandstones alternate with green packages of muddy siltstones with abundant Celtic brachiopod associations (Benedetto, 1994, 1998, 2003), suggestive of a volcano-sedimentary interaction within a shallow marine intra-Iapetus volcanic-arc setting. Sedimentologic analysis documented the presence of structures indicative of tidal influence, such as herringbone cross-stratification and mud drapes in some of the sandy packages (Astini, 1998). Conodont and acritarcs from the upper two members of the Suri Formation and the Los Molles Formation in central Famatina suggest middle Arenigian or uppermost Ibexian age (upper part of Oepikodus avae Zone) (Albanesi and Astini, 2000; Rubinstein and Astini, 2000). Conodonts from the Baltoniodus navis Zone recorded in the Loma del Kilómetro Member in the north clearly indicate a younger age (late middle Arenigian) in this zone. Although from a lithological viewpoint the Los Molles Formation has been correlated with the Punta Pétrea Member in the Chaschuil area (Astini, 1998, 1999b; Esteban et al., 1999), the associated shelly faunas indicate that the Punta Petrea Member is slightly younger, therefore suggesting north-south facies gradients in a relatively complex architectural mosaic as usually typifies volcanic arc settings. A correlation between the Morado Group of central Famatina with the Punta Petrea Member and the Las Planchadas Formation is herein suggested.

The stratigraphic position and age of the associated volcanic and pyroclastic calc-alkaline rocks have been controversial (cf. Turner, 1967; Maisonave, 1973). The Las Planchadas Formation, which crops out in the northern extreme of the Famatina geologic province, is now thought to fit within the upper part of the succession (Aceñolaza and Toselli, 1977, 1984; Toselli et al., 1990; Mángano and Buatois, 1994a; Cisterna, 2001). In the Sierra de Famatina area, the Molles Formation is uncomformably overlain by the Cerro Morado Group (Astini and Dávila, 2002). This group consists, from base to top, of the El Portillo and La Escondida Formations. The El Portillo Formation (formerly Cerro Morado Formation) is 580 m thick and is composed by acidic volcanics and ignimbrites. The La Escondida Formation is 147 m thick and consists of volcaniclastic sandstone, mudstone, tuff and ignimbrite that accumulated in a shelf affected by contemporaneous volcanism

and frequent storms, as suggested by the association of tempestites and pyroclastic flow deposits (Astini and Dávila, 2002). Astini and Dávila (2002) suggested a link between hundred-meter scale regressive-transgressive cycles within both the Famatina Group and the Cerro Morado Group and thermal inflation/contraction and flexural response to loading, a prominent characteristic of volcanicarc settings. Preliminary conodont data (Albanesi, personal communication, 2002) suggest a middle to late Arenigian age, but thickness and usual duration of volcano-tectonic cycles allow tentative assignment to the Llanvirnian (Astini and Dávila, 2002). Brachiopod assemblages (Benedetto, personal communication, 2002) also support this estimation.

Volcano-sedimentary successions were intruded during the Ordovician by syntectonic granitoids and dykes (Cisterna, 1992, 2000; Rapela et al., 1999; Pankhurst et al., 2000). Isotopic age constraints for intrusive activity along the Famatina belt have had a considerable advance in recent years (Rapela et al., 1999, 2001; Pankhurst et al., 1998, 2000) allowing to sort out the mingled ages embraced for years for the Famatina Orogeny, particularly those related to the Early Ordovician Ocloyic event.

Rapela et al. (1999, 2001) recently provided high-resolution dating bracketing the age of magmatism and estimating metamorphic age range associated with the accretion of the Precordillera terrane to Gondwana. These data allow clear differentiation of a pre-amalgamation suite previous to 470 Ma, taken as the main intrusive period of the Famatinian granites (Pankhurst et al., 2000) and a later thermal metamorphism, largely bracketed between 460-470 Ma. This, in turn, has been related to the closure of the Famatina basin on the Gondwana margin and associated to rapid crustal thickening.

The accretion event has apparently embraced both the western Gondwana margin (with Pampean ages ca. 540-520 Ma) and the eastern basement sector of the Precordillera terrane (with Grenville ages ca. 1000-1200 Ma) according to Rapela et al. (2001) and Baldo et al. (2001). These data are seldom obscured by a much younger Early Devonian superimposed shortening event recorded along most of the proto-andean margin (Precordilleranic-Chanic tectonism, see Astini, 1996), which has been variously interpreted along the western Gondwana margin. Many of the Late Ordovician and Silurian ages previously assigned to the Ocloyic event are at present interpreted as reset due to postemplacement events (Rapela et al., 2001). Subduction related granites regarded as cordilleran-type plutonism (Rapela et al., 1992) go back to at least ~490 Ma and have been related to a precollisional Andean-type margin.

Tectonic setting

Igneous petrology and geochemistry studies indicate that the Famatina belt was formed in an active plate setting along the early Paleozoic western Gondwana margin (Aceñolaza and Toselli, 1984, 1986; Toselli et al., 1990; Rapela et al., 1992; Saavedra et al., 1998; Pankhurst et al., 1998).

Geochemical studies of plutonic rocks exposed in different zones of the Famatina Range, such as Sierra de Paimán (Paimán Granitoid), Sierra de Famatina (Cerro Toro Granitoid), and Sierra de Sañogasta (Nuñorco Granitoid), indicate the roots of a roughly north-south trending magmatic arc (cf. Toselli et al., 1991, 1993, 1996; Pankhurst et al., 1998; Coira et al., 1999). Ordovician intrusives are associated with volcanic rocks comprising the Las Planchadas Formation and Cerro Morado Group.

Plutonic rocks are cogenetic with volcanics and thus represent the same magmatic event (Cisterna, 1992; Rapela et al., 1992, 1999). Contrary to what was previously thought, the recent datings previously mentioned indicate that the granites predate or, at the most, are coeval with the volcanism, better explaining their cogenetic relationship. This predominantly calc-alkaline volcanism has been suggested as the source of K-bentonites (ash-layers) embedded in the upper section of the platform carbonates and black shales of the Precordillera terrane to the east (Huff et al., 1998, and references therein).

However, this posses a new relationship which certainly influences the suggested tectonic setting. In Sierra de Fiambalá (western Sierras Pampeanas), the presence of Lower Ordovician deep crustal arc

rocks suggests that the arc extended eastward into the western Sierras Pampeanas (cf. Grissom et al., 1991). Outcrops of this lower Paleozoic peri-Gondwanic magmatic arc extend for about 1200 km, including the northern Puna intrusives, volcanics and volcaniclastics of the so-called “Faja Eruptiva de la Puna Occidental” (Coira et al., 1982; Aceñolaza and Toselli, 1984; Breitkreuz et al., 1989; Bahlburg, 1990). More or less coeval igneous rocks exposed in Sierra de Ancasti and Sierra de Quilmes (eastern Sierras Pampeanas) point to a back-arc setting for this eastern region (Rapela et al., 1990; Quenardelle and Ramos, 1999, Rapela, 2000), whereas the Famatina Belt would represent the main arc.

While some authors considered the Famatina belt as part of the western Gondwana margin (e.g. Toselli et al., 1996; Pankhurst et al., 1998), recent studies have proposed that Famatina may represent an independent terrane (Quenardelle and Ramos, 1999; Ramos, 1999, 2000). This alternative is supported by paleomagnetic data (Conti et al., 1996, Rapalini et al., 1999) from the Las Planchadas Formation, the brachiopod fauna with strong Celtic, intra-Iapetus affinities (Benedetto, 1998), and by the recent finding of low-latitude calcareous algae in the Volcancito Formation, which casts some doubt on the authochthony of the region by the latest Cambrian-earliest Tremadocian (Astini, 2000, 2001a). A much lower latitude position is suggested considering the predominance of carbonates in a non-volcanic setting. Recent isotope data indicate, however, that by the Early Ordovician (bracketed between ~490-470 ma; Rapela et al., 1999, 2001) large batholithic masses emplaced in a thickened continental crust with coeval trondhjemite-tonalite-granodiorite (TTG), metaluminous I-type and highly peraluminous S-type granites (Pankhurst et al., 2000). Moreover, Sr- and Ndisotopic data and trace element analysis suggest that apart from minor TTG plutons of astenospheric origin, the rest of the magmas were largely derived from melting of a thickened Proterozoic crustlithospheric crust section. The S-type granites in turn show a strongly similar isotopic and inherited zircon pattern derived from Cambrian supracrustal metasedimentary rocks deposited during the Pampean cycle and apparently derived from them by anatexis, suggesting crustal recycling on an active continental margin along western Gondwana (Pankhurst et al., 2000, Rapela et al., 2001).

Although there is agreement on the active plate margin emplacement of the Famatina Basin, doubts still persist regarding its more precise tectonic setting. Earlier studies suggested that the Famatina Range represents a volcanic island arc (Aceñolaza and Toselli, 1984, 1988). Subsequently, Mannheim (1993b) further developed this model and interpreted the Famatina basalts as island arc tholeiites. However, Mángano and Buatois (1996b, 1997) related the arc tholeiites to an extensional regime within an intra-arc formed in continental crust, rather than oceanic crust as previously thought. As noted by Quenardelle and Ramos (1999) and Rapela (2000), the predominance of granodiorites and granites also indicates that the arc was developed in continental crust.

Most authors have assumed that it represents a backarc basin (e.g. Mannheim, 1993a; Clemens, 1993; Toselli et al., 1996). However, because of its extended temporal development, filling and deformation of the basin should be seen as a continuum probably involving progressive fore-arc, intra-arc and back-arc stages (e.g. Saavedra et al., 1998). The distinction of forearc, intra-arc and bakarc positions is not always clear in ancient settings due to subsequent deformation and intrusions related to collision-accretion procesess along the active margin. However, intra-arc basins are located on the arc platform and they closely record the evolution of the arc. Proximal volcanic deposits interbedded with dominantly volcaniclastic deposits as those recorded in the Suri Formation and Cerro Morado Group, are critical to the recognition of an intra-arc emplacement.

Intra-arc models for the volcanic setting of the Suri Formation were favored by Mángano and Buatois (1996b, 1997) who indicated an extensional arc-setting stage (see also Quenardelle and Ramos, 1999; Ramos, 2000). Within this framework, the coincidence of a thick Arenigian sedimentary succession and volcanic-plutonic arc rocks in the Famatina Basin may indicate an extensional or transtensional arc setting (Mángano and Buatois, 1996b, 1997). The suggestion of an extensional regime associated with the Famatina volcanic arc is consistent with evidence presented from the Cordón de Lila in the northern Chilean Puna by Damm et al. (1991). These authors documented Ordovician volcanic rocks interbedded with marine sediments associated with crustal extension in a segmented horst and graben-type setting.

Depositional evolution

Integration of information from the different areas of the basin sheds light on the depositional and tectonic evolution of the Famatina Basin. Four evolutionary stages are recognized here and their main features summarized below:

Late Cambrian - early Tremadocian

This stage is recorded by the lower and middle Members of the Volcancito Formation. The stage represents the onset of sedimentation within the Famatina Basin after a period of quiescence and subsidence of folded Pampean age basement rocks. The sedimentary record spans for approximately 5 m.y. through the Cambrian-Ordovician boundary with carbonate sedimentation taken as indicative of low-latitude warm waters. Recognized low-latitude fossil algae (Nuia-Girvanella associations) are unique to western Gondwana, which is usually positioned at higher latitudes. Megabreccias embedded in this interval dominated by shallow-marine storm-dominated features indicate a tectonically unstable setting. The transition to black-shales in the early Tremadocian (~487 Ma) suggests gradual deepening related to relative sea-level rise and consequent drowning. Pelagic organisms (graptolites and phylocarids) and lack of bottom communities indicate a progressively more restricted depocenter with settling of fines and pelagic faunas through a well-stratified water column with anoxia developed near the bottom. This thick black-shale package can alternatively represent restricted outer-shelf depocenters of foredeep environments. The early Tremadocian transgressive event undoubtedly has interbasinal significance and can be traced into the Northwest Argentina Basin, where the Cambrian-Ordovician transition is associated with a major rise in sea level. No evidence of concomitant volcanic activity has been detected yet in this unit, but plutonic ages in the Famatina Belt indicate an active Cordilleran-type magmatism along this region by the early Tremadocian.

Late Tremadocian

This stage is represented by the so-called upper member of the Volcancito Formation, which is better regarded a separate formation. As outlined above this unit outrops in a separate region and its stratigraphic relationship with the other Ordovician units of Famatina is rather unclear. This unit records deposition on a relatively deep shelf under oxygen-poor conditions (Esteban, 1992). Silicified sandstone beds have volcanic detritus and suggest deposition under the influence of coeval volcanism (Esteban, 1993). This represents the first evidence of volcanism recorded in the Famatina Belt (~ 482 Ma) and can be correlated with the onset of volcanism in the Puna region (Moya et al., 1993; Koukharsky et al., 1996). In Central Famatina the Cerro Tocino volcanics probably record initial andesite volcanic flows along the arc. Volcanic rocks also occur at the base of the section in the northern Chaschuil region. Tentatively this volcanics are assigned to the Late Tremadocian although there is no real constrain other than the fact that they underlie the Suri Formation. The lowermost interval of the La Alumbrera Formation might also be correlated with these volcanics as previously suggested. At a regional scale, fine-grained deposits that characterizes this stage may also correlate in part with outer-shelf deposits of the Santa Rosita/Saladillo-Parcha Formations in the Cordillera Oriental.

Early Arenigian

The early Arenigian phase is represented by the upper part of the La Alumbrera Formation, the Vuelta de Las Tolas Member and the lowermost black shale member of the Suri Formation in central Famatina. The Portezuelo de Las Minitas is included in this phase also, but the lack of detailed studies and uncertainty with respect to their relation with the Suri Formation prevent further analysis at this time. This stage records approximately 6 m.y., encompassing the complete early to early middle Arenigian, but it may include the latermost Tremadocian. Facies analysis by Mángano and Buatois (1997) suggests that the Vuelta de Las Tolas Member records sedimentation on a slope apron formed within an intra-arc basin on a flooded continental arc. Concomitant explosive volcanism is mainly documented by accretionary lapilli in pyroclastic-laden deposits associated with slope turbidite channels (Mángano and Buatois, 1997).

During this stage, tectonic subsidence linked to extension led to the formation of a series of depocenters. This allows explaining the lateral facies changes and diachronism observed along the Famatina belt. Subsidence provided high accommodation potential, but prevailed over sediment supply, precluding filling of the tectonic depressions. Trace-fossil distribution in the Vuelta de Las Tolas Member seems to have been controlled by oxygen fluctuations induced by turbidity currents within an oxygen-depleted setting, highly suggestive of limited deep-water circulation in topographically restricted sub-basins (Mángano et al., 1996). Deposition of unbioturbated, thick, uniform mudstone packages probably record ponded sedimentation in the confined setting of isolated depocenters within the arc (Mángano and Buatois, 1997).

These slope deposits are poorly organized and reflect the strong imprint of allogenic processes.

Small-scale thinning- and fining-upward successions appear to be restricted to the fill of individual channel systems in Northern Famatina (Fig. 3). Small-scale coarsening- and thickening-upward cycles, which otherwise would reflect progradation of depositional lobes, have not been detected. As a whole, the Vuelta de las Tolas Member succession displays a crude overall fining-upward pattern that may reflect migration of the arc from the depositional site, decrease in volcanic activity, and/or decrease in extensional faulting. In any case, the presence of wave-reworked beds in the uppermost part of the succession suggests an overall shallowing trend and indicates the position of the slopeshelf transition. This regressive trend was accentuated during accumulation of the shallow marine deposits of the overlying Loma del Kilómetro Member. In Central Famatina, the succession shows gradual transition to more oxygenated environments and an overall coarsening-upward pattern (Astini, in press).

In terms of facies and depositional setting, the middle Arenigian succession of the Aguada de la Perdiz Formation in Puna is similar to the Vuelta de Las Tolas Member (cf. Breitkreuz et al. 1989; Bahlburg 1991; Bahlburg and Breitkreuz 1991). However, general facies trends from the Vuelta de Las Tolas Member suggest progressive shallowing, whereas the Aguada de la Perdiz Formation deepens upwards, which probably reflect the imprint of local tectonics rather than global sea level changes. Volcano-tectonic activity is clearly indicated by the episodic influx of coarser-grained, volcanogenic and juvenile pyroclastic detritus derived from the flanks of the arc, mainly via gravityflow processes (Mángano and Buatois, 1997). These units can be correlated with the lower section of the Acoite Formation in the Cordillera Oriental.

Middle Arenigian to Llanvirnian?

The middle Arenigian to Llanvirnian? phase is represented by the Loma del Kilómetro and Punta Pétrea Members of the Suri Formation and by the partially coeval Molles Formation as well.

The volcanic episode represented by the Cerro Morado Group and the Las Planchadas Formation is included in this phase as well. The Loma del Kilómetro Member records sedimentation in a stormand mass flow-dominated high-gradient shelf adjacent to the volcanic arc (Mángano and Buatois, 1996a). Volcano-tectonic activity was the important control on shelf morphology, whereas relative sea-level change influenced sedimentation. The storm stratal patterns with rapid vertical and lateral facies shifts and the envisaged sand dispersal mechanism altogether suggest a narrow, geographically restricted, relatively high-gradient shelf (Mángano and Buatois, 1992b, 1996a). In active margin settings, the slope of the shelf is largely controlled by volcanic arc growth; as the arc grows, the slope steepens and a high-gradient shelf may be formed, fringing the volcano (Mángano and Buatois, 1996a). Resedimentation of volcanic material was a key process in this shallow-water system.

Volcaniclastic detritus and andesitic volcanics on the arc flanks were eroded, transported basinward and redeposited by gravity flows. Slump and storm wave liquefaction may have triggered unidirectional flows that deposited a large volume of detritus on the lower shoreface and offshore (Mángano and Buatois, 1996a). Biostratinomic, paleoecologic, and ichnologic evidence support this paleoenvironmental interpretation and provide independent evidence for the dominance of episodic sedimentation in an arc-related shallow marine setting (Mángano and Buatois, 1992c, 1995, 1996a).

The lower part of the Loma del Kilómetro Member is thought to record mud blanketing during highstand and volcanic quiescence. Progradation of the inner shelf and lower shoreface deposits of the middle interval represents an abrupt basinward shoreline migration during a forced regression. The upper part of the Loma del Kilómetro Member records a transgression with no evidence of contemporaneous volcanism. In the Chaschuil area, a subsequent regressive pulse was recorded by the Punta Pétrea Member, which reflects the progradation of a volcaniclastic fan delta (Mángano and Buatois, 1994a). Fan-delta progradation is coincident with a remarkable peak in volcanic activity. In the Sierra de Famatina area, tidal sedimentation is recorded in the overlying Molles Formation (Astini, 1998).

Transgressive-regressive cycles most likely induced by volcano-tectonic activity seem to be particularly common in both the upper part of the Famatina Group and in the Cerro Morado Group. These cycles are interpreted as a product of the flexural and thermal response during active volcanism and intervals of quiescence, where shallow-marine environments interact with important volcaniclastic input (Astini and Dávila, 2002). This episodic basin dynamics influenced sea-level fluctuations and exerted the cyclical pattern recognized throughout most of the Ordovician succession in the Famatina Basin with patterns that can be interpreted as forced regressions and abrupt transgressions. In this context, the non-topographically controlled intra-Ordovician angular unconformity described between the Early Ordovician Famatina Group and the Cerro Morado Group in central Famatina (Astini and Dávila, 2002; Dávila et al., 2003) can be considered a unique evidence of major folding in the Famatina belt, most likely related to the Ocloyic orogeny. Depositional evolution suggests that during middle Arenigian to probably Llanvirnian overall sedimentation is represented by shallow-water facies assemblages punctuated in the upper part of the succession by subaerial exposure episodes and that the volcanic arc was close to sea level for most of its history (Mángano and Buatois, 1992a, 1994a; Astini and Dávila, 2002).

The volcanic rocks recorded at the top of the lower Paleozoic succession in the Cerro Morado Group and Las Planchadas Formation reveal a peak in volcanic activity by the late Arenigian to probably Llanvirnian. This is consistent with shallow-level igneous activity along the Famatina belt, because most recent plutonic ages (Rapela et al., 1999, 2001) show active magmatism since the early Tremadocian. Important crustal contamination of the Cordilleran-type plutonism favors an upperplate position in an active Andean-type margin. Such a setting may have been true until collision of the Precordillera terrane and development of the Middle Ordovician Ocloyic orogeny as supported by various independent lines of evidence.

Acknowledgements. We express our sincere thanks to Andy Rindsberg who read the manuscript and offered valuable suggestions. We acknowledge the various institutions who provided funds to carry work in Famatina: Consejo Nacional de Ciencia y Tecnología, Consejo de Investigaciones Científicas y Tecnológicas de Córdoba, Secretaría de Ciencia y Técnica de las Universidades Nacionales de Córdoba y Tucumán and Sigma Xi.  

References

Aceñolaza, F.G., 1978. El plutonismo eopaleozoico del Sistema de Famatina. Reunión Nacional El Paleozoico de Argentina, Suplemento Acta Geológica Lilloana, 14: 23-26.

Aceñolaza, F.G. and Durand, F.R., 1984. Observaciones sobre la fauna graptolítica tremadociana del Famatina, provincia de La Rioja. 9o Congreso Geológico Argentino (San Carlos de Bariloche), Actas, 4: 267-276.

Aceñolaza, F.G. and Gutierrez Marco, J.C., 2000. Graptolitos de la Formación Portezuelo de las Minitas (Ordovícico inferior) del Sistema de Famatina, La Rioja (Argentina). Boletín de la Academia Nacional de Ciencias, 64: 17-26.

Aceñolaza, F.G. and Rabano, I., 1990. Nota sobre algunos trilobites Asaphina de la Formación Suri (sierra de Famatina, La Rioja, Argentina). 5o Congreso Argentino de Paleontología y Bioestratigrafía (San Miguel e Tucumán), Actas, 1, Serie Correlación Geológica, 7: 39-49.

Aceñolaza, F.G. and Toselli, A.J., 1977. Observaciones geológicas y paleontológicas sobre el Ordovícico de la zona de Chaschuil, Provincia de Catamarca. Acta Geoógica Lilloana, 14: 55-81.

Aceñolaza, F.G. and Toselli, A.J., 1981. Geología del Noroeste Argentino. Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, San Miguel de Tucumán, 212 pp.

Aceñolaza, F.G. and Toselli, A.J., 1984. Lower Ordovician volcanism in North West Argentina. In: Bruton, D.L. (Ed.), Aspects of the Ordovician System. Paleontological Contribution University of Oslo, 295: 203-209.

Aceñolaza, F.G. and Toselli, A.J., 1986. Vulcanismo intercalado al Ordovícico inferior clástico en el noroeste de Argentina. Revista Instituto de Geología y Minería, 6: 49-63.

Aceñolaza, F.G. and Toselli, 1988. El Sistema del Famatina, Argentina: su interpretación como orógeno de margen continental activo. V Congreso Geológico Chileno (Santiago), Actas, 1: 55-67.

Aceñolaza, F.G., Gorustovich, S. and Solis, J., 1976. El Ordovícico del río La Alumbrera, Departamento Tinogasta, Provincia de Catamarca. Ameghiniana, 13: 269-288.

Aceñolaza, F.G., Miller, H. and Toselli, A. (Eds.), Geologia del Sistema del Famatina. Munchner Geologische Hefte, A19: 1-411.

Albanesi, G.L. and Astini, R.A., 2000. New conodont fauna from Suri Formation (Early-Middle Ordovician), Famatina System, western Argentina. Reunión Anual de Comunicaciones Asociación Paleontológica Argentina (Mar del Plata), Ameghiniana Suplemento, 37: 68R.

Albanesi, G.L. and Vaccari, N.E., 1994. Conodontos del Arenig en la Formación Suri, Sistema del Famatina, Argentina. Revista Española de Micropaleontología, 26: 125-146.

Albanesi, G.L., Esteban, S.B. and Barnes, C.R., 1999. Conodontes del intervalo del límite Cámbrico-Ordovícico en la Formación Volcancito, Sistema de Famatina, Argentina. Temas Geológico-Mineros ITGE, 26: 521-526.

Albanesi, G.L., Barnes, C.R. and Hünicken, M.A., 2000. Conodont paleobiogeography of the Iapetus Ocean in the Cambrian-Ordovician boundary interval. 31st International Geological Congress (Río de Janeiro), Abstracts, CD.

Astini, R.A., 1996. Las fases diastróficas del Paleozoico medio en la Precordillera del oeste argentino –evidencias estratigraficas–. 13º Congreso Geológico Argentino y 3º Congreso de Exploraciones e Hidrocarburos (Buenos Aires), Actas, 5: 509-526.

Astini, R.A., 1998. El Ordovícico de la región central del Famatina (provincia de La Rioja, Argentina): aspectos estratigráficos, geológicos y geotectónicos. Revista de la Asociación Geológica Argentina, 53: 445-460.

Astini, R.A., 1999a. Sedimentary record, vulcano-tectonic cyclicity and progressive emergence of an Early Ordovician perigondwanic volcanic arc: the Famatinian System. Acta Universitatis Carolinae Geologica, 43: 115- 118.

Astini, R.A., 1999b. El Ordovícico del Sistema de Famatina. In: González Bonorino, G., Omarini, R. and Viramonte, J. (Eds.), Relatorio XIV Congreso Geológico Argentino. Geología del Noroeste Argentino, 1: 152-158.

Astini, R.A., 2000. El ambiente geotectónico del Ordovícico de la región del Famatina. Réplica. - Revista de la Asociación Geológica Argentina, 55: 136-138.

Astini, R.A., 2001a. Las algas calcáreas Nuia y Girvanella a través de la trasición cambro-ordovícica (Formación Volcancito) en el Famatina: significado paleoambiental y paleogeográfico. Ameghiniana, 38: 243-255.

Astini, R.A., 2001b. Paleoenvironmental reconstruction and paleoclimatic implications of a perigondwanic Cambrian-Ordovician mixed carbonate-siliciclastic succession in Famatina, western Argentina. Official Business Meeting and Field Excursion of the Subcommision on Ordovician Stratigraphy, International Commision on Stratigraphy (Rabat), Abstracts: 31-32.

Astini, R.A., 2003. The Ordovician basins along the Proto-Andean margin. In: Benedetto, J.L. (Ed.), Ordovician Fossils of Argentina. Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba, Córdoba, Argentina. In press.

Astini, R.A. and Benedetto, J.L., 1996. Paleoenvironmental features and basin evolution of a complex volcanic-arc region in the Pre-Andean western Gondwana: The Famatina belt. 3° International Symposium on Andean Geodynamics (St. Malo), Extended abstracts: 755-758.

Astini, R.A. and Dávila, F.M., 2000. Event-layer sedimentation in a Cambro-Ordovician mixed platform (Volcancito Formation), Famatina System, western Argentina. II Congreso Latinoamericano de Sedimentología y VIII Reunión Argentina de Sedimentología (Mar del Plata), Resúmenes: 38-39.

Astini, R.A., and Dávila, F.M., 2002. El Grupo Cerro Morado (Ordovícico Medio) en el Famatina (28-29º), Andes centrales del oeste argentino. Revista Geológica de Chile, 29: 241-254.

Bahlburg, H., 1990. The Ordovician basin in the Puna of NW Argentina and N Chile: geodynamic evolution from back-arc to foreland basin. Geotekt. Forsch., 75: 1-107.

Bahlburg, H., 1991. The Ordovician back-arc to foreland successor basin in the Argentinian-Chilean Puna: tectono-sedimentary trends and sea-level changes. In: D. Macdonald (Ed.), Sedimentation, Tectonics and Eustasy: Processes and Products: Special Publication International Association of Sedimentologists, Blackwell Scientific Publications, 1: 465-484.

Bahlburg, H., and Breitkreuz, C., 1991. Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile). Journal of South American Earth Sciences, 4: 171-188.

Baldo, E., Casquet, C., Rapela, C.W., Pankhurst, R.J., Galindo, C., Fanning, C.M. & Saavedra, J., 2001. Ordovician metamorphism at the southwestern margin of Gondwana: P-T conditions and U-Pb shrimp ages from Loma de Las Chacras, Sierras Pampeanas. 3º South American Symposium on Isotope Geology (Pucón), Extended Abstracts Volume (CD): 544-547.

Benedetto, J.L., 1994. Braquiópodos ordovícicos (Arenigiano) de la Formación Suri en la región del río Chaschuil, Sistema del Famatina, Argentina. Ameghiniana, 31: 221-238.

Benedetto, J.L., 1998. Early Palaeozoic brachiopods and associated shelly faunas from western Gondwana: its bearing on the gedynamic history of the pre- Andean margin. In: Pankhurst, R. and Rapela, C.W. (Eds.), The proto-Adean margin of Gondwana, Geological Society Special Publication, 142: 57-83.

Benedetto, J.L., 2003. Early Ordovician (Arenig) brachiopods from volcaniclastic rocks of the Famatina Range, northwest Argentina. Journal of Paleontology, 77. In press.

Bodenbender, G., 1916. El Nevado de Famatina. Boletín de la Academia Nacional de Ciencias de Córdoba, 21:100-182. Brackebush, L., 1891. Mapa Geológico del interior de la República Argentina, escala 1:100.000. Gotha.

Breitkreuz, C., Bahlburg, H., Delakowitz, B. and Pichowiaki, S., 1989. Paleozoic volcanic events in the Central Andes. Journal of South American Earth Sciences, 2: 171-189.

Cisterna, C.E., 1992. Granitoides paleozoicos de la sierra de Narváez, Sistema de Famatina, Argentina: Hibridización de magmas en un margen continental activo. Estudios Geológicos, 48: 229-235.

Cisterna, C.E., 2000. Evolución magmato-tectónica del Complejo Granítico de Cerro Blanco, Sistema de Famatina, Argentina. Revista de la Asociación Geológica Argentina, 55: 72-82.

Cisterna, C.E., 2001. Volcanismo subácueo en el Eopaleozoico del Sistema de Famatina, noroeste de Argentina. Revista de la Asociación Geológica Argentina, 56: 16-24.

Cisterna, C.E. and Toselli, A.J., 1996. Granitos y volcanitas de la Sierra de Narváez. In: Aceñolaza, F.G., Miller, H. and Toselli, A. (Eds.), Geologia del Sistema del Famatina. Munchner Geologische Hefte, A19: 261-273.

Clemens, K., 1993. Sedimentología, proveniencia y desarrollo geotectónico del Sistema de Famatina en el Noroeste de Argentina durante el Paleozoico inferior. XII Congreso Geológico Argentino and II Congreso de Exploración de Hidrocarburos (Mendoza), Actas, 1: 310-320.

Coira, B., Davidson, J., Mpodozis, C. and Ramos, V., 1982. Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth Science Reviews, 18: 303-332.

Coira, B., Toselli, A., Koukharsky, M., Rossi de Toselli, J. and Kay, S.M., 1999. Magmatismo Famatiniano. In: González Bonorino, G., Omarini, R. and Viramonte, J. (Eds.), Relatorio XIV Congreso Geológico Argentino. Geología del Noroeste Argentino, 1: 189-211.

Conci, I.D., Dávila, F.M., Astini, R.A. and Martino, R.D., 2001. La faja de deformación de Chuschín (29º 17’S), sierra de Famatina, provincia de La Rioja, Argentina. In: Cortés, M.J., Rosello, E. and Dalla Salda, L. (Eds.), Avances en Microtectónica. Asociación Geológica Argentina, Serie D, Publicación Especial, 5: 117-120.

Conti, C.M., Rapalini, A.E., Coira, B. and Koukharsky, M., 1996. Paleomagnetic evidence of an early Paleozoic rotated terrane in northwest Argentina: a clue from Gondwana-Laurentia interaction? Geology, 24: 953-956.

Damm, K.W., Pichowiak, S., Breitkreuz, C., Harmon, R.S., Todt, W. and Buchelt, M., 1991. The Cordón de Lila Complex, central Andes, northern Chile; An Ordovician continental volcanic province. In: Harmon, R.S. and Rapela, C.W. (Eds.), Andean magmatism and its tectonic setting. Geological Society of America Special Paper, 265: 179-187.

Davila, F.M., Astini, R.A. and Schmidt, C., 2003. Unraveling 470 my of shortening in the Central Andes and documentation of Type 0 superposed folding. Geology. In press. de Alba, E., 1979. El sistema del Famatina. Segundo Simposio de Geología Regional Argentina, Academia Nacional de Ciencias I: 349-395. Córdoba.

Esteban, S., 1992. Presencia de Plesioparabolina sp. (trilobita) en la Formación Volcancito (Tremadociano), quebrada del Portezuelo de La Alumbrera, Sistema de Famatina, Argentina. Serie Correlación Geológica, 9: 57-61.

Esteban, S., 1993. Litofacies de plataforma en la Formación Volcancito (Tremadociano), flanco oriental de la sierra de Famatina, La Rioja; Argentina. 12o Congreso Geológico Argentino y 2o Congreso de Exploración de Hidrocarburos (Mendoza), Actas, 1: 116-120.

Esteban, S.B., 1994. Oxygen-deficient facies in the Early Ordovician of the Famatina System, La Rioja Province, NW Argentina. 14th International Sedimentological Congress (Recife), Abstracts, A-10.

Esteban, S., 1996. Los primeros trilobites ciclopígidos en el Ordovícico de Argentina (Formación Volcancito, Sistema de Famatina). Ameghiniana, 33: 57-64.

Esteban, S., 1998. Estratigrafía, geología sedimentaria y paleontología del Ordovícico basal del Sistema de Famatina. Tesis Doctoral. Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán. Unpublished. 189 p.

Esteban, S. and Gutierrez Marco, J.C., 1997. Graptolitos del Tremadoc del Sistema de Famatina (Argentina). V Reunión Internacional del Proyecto 351 PICG «Paleozoico inferior del Noroeste de Gondwana» (La Coruña), Libro de Resúmenes: 59-63.

Esteban, S. and Rigby, J.K., 1998. Hexactinellid sponges from the Lower Tremadocian Volcancito Formation, Famatina Range, Northwestern Argentina. Brigham Young University Geology Studies, 43: 1-7.

Esteban, S., Tortello, F., Mángano, M.G., Buatois, L.A. and Aceñolaza, F.G., 1999. Bioestratigrafía del Paleozoico inferior del Sistema del Famatina. In: González Bonorino, G., Omarini, R. and Viramonte, J. (Eds.), Relatorio XIV Congreso Geológico Argentino. Geología del Noroeste Argentino, 1: 217-223.

Grissom, G.C., Debari, S.M., Page, S.P., Page, R.F.N., Villar, L.M., Coleman, R.G. & de Ramirez, M.V., 1991. The deep crust of an early Paleozoic arc; The Sierra de Fiambalá, northwestern Argentina. In: Harmon, R.S. and Rapela, C.W. (Eds.), Andean magmatism and its tectonic setting. Geological Society of America Special Paper, 265: 189-200.

Huff, W.D., Bergstrom, S.M., Kolata, D.R., Cingolani, C. and Astini, R.A., 1998. Ordovician K-bentonites in the Argentine Precordillera: relations to gondwana margin evolution. In: Pankhurst, R.J. and Rapela, C.W. (Eds.), The Proto-Andean margin of Gondwana. Geological Society of London Special Publication, 142: 107-126.

Kayser, R., 1876. Ueber primordiale und untersilurische fossilien der Argentinischen Republik. Paleontographica supplement, 2: 1-33.

Koukharsky, M., Torres Clara, R., Etcheverria, M., Vaccari, N.E. and Waisfeld, B.G., 1996. Episodios volcánicos del Tremadociano y del Arenigiano en Vega Pinato, Puna salteña, Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos (Buenos Aires), Actas, 5: 535-542.

Lavandaio, E., 1973. Geología del Cerro Tolar-Cuchilla Negra, Sierra de Famatina, La Rioja, Argentina. 5to Congreso Geológico Argentino (Córdoba), Actas, 4: 41-54.

Levy, R. and Nullo, F., 1973. Braquiópodos ordovícicos de la Sierra del Famatina (Formación Molles), prov. de La Rioja. Ameghiniana, 10: 139-151.

Levy, R. and Nullo, F., 1980. Braquiópodos ordovícicos de la Sierra del Famatina (Formación Suri), provincia de La Rioja, República Argentina. II Congreso Argentino de Paleontología y Bioestratigrafía (Buenos Aires), Actas, 1: 37-47.

Maisonave, H.M., 1973. Estratigrafía de los alrededores de Chaschuil, Dpto Tinogasta, provincia de Catamarca. 5to Congreso Geológico Argentino (Buenos Aires), Actas, 5: 75-87.

Mángano, M.G. and Buatois, L.A., 1990a. Evolución paleoambiental del Ordovícico del sur del Río Chaschuil, noroeste de la Sierra de Narváez, Sistema del Famatina. 11o Congreso Geológico Argentino (San Juan), Actas, 2: 227- 231.

Mángano, M.G. and Buatois, L.A., 1990b. Análisis tafonómico de concentraciones fósiles en las sedimentitas volcaniclásticas ordovícicas del sur del Río Chaschuil, noroeste de la Sierra de Narváez, Catamarca, Argentina. 5to Congreso Argentino de Paleontología y Bioestratigrafía (San Miguel de Tucumán), Actas, 1, Serie Correlación Geológica, 7: 51-57.

Mángano, M.G. and Buatois, L.A., 1992a. Historia deposicional de las secuencias ordovícicas marinas del Sistema del Famatina en el noroeste de la sierra de Narváez, Catamarca, Argentina. 4a Reunión Argentina de Sedimentología (La Plata), Actas, 2: 215-222.

Mángano, M.G. and Buatois, L.A., 1992b. Depósitos de tormenta en una plataforma volcaniclástica de alto gradiente, Formación Suri, Sistema del Famatina, Argentina. El Paleozoico inferior en Latinoamérica y la génesis del Gondwana, Serie Correlación Geológica, 9: 145-156.

Mángano, M.G. and Buatois, L.A., 1992c. Análisis genético de concentraciones fósiles en una secuencia volcaniclástica de plataforma, Formación Suri (Ordovícico del Sistema del Famatina). Ameghiniana, 29: 135-151.

Mángano, M.G. and Buatois, L.A., 1994a. Estratigrafía y ambiente de sedimentación de la Formación Suri en los alrededores del río Chaschuil, Ordovícico del Sistema del Famatina, noroeste argentino. Revista de la Asociación Argentina de Sedimentología, 1: 143-169.

Mángano, M.G. and Buatois, L.A., 1994b. Un ejemplo de sedimentación en plataformas adyacentes a arcos volcánicos: Miembro Loma del Kilómetro, Formación Suri, Cuenca Ordovícica del Famatina. 5a Reunión Argentina de Sedimentología (San Miguel de Tucumán), Actas, 1: 65-70.

Mángano, M.G. and Buatois, L.A., 1995. Biotic Response to volcanic and sedimentologic processes in a Gondwanic active plate margin basin: the Arenig-Llanvirn Suri Formation, Famatina Basin, northwest Argentina. 7th International Symposium on the Ordovician System. Pacific Section SEPM (Las Vegas): 229-232.

Mángano, M.G. and Buatois, L.A., 1996a. Shallow marine event sedimentation in a volcanic arc-related setting from the Ordovician Suri Formation of northwest Argentina (Famatina System). Sedimentary Geology, 105: 63-90.

Mángano, M.G. and Buatois, L.A., 1996b. Estratigrafía, sedimentología y evolución paleoembiental de la Formación Suri en la subcuenca de Chaschuil, Ordovícico del Sistema del Famatina. In: Aceñolaza, F.G., Miller, H. and Toselli, A. (Eds.), Geología del Sistema del Famatina. Munchner Geologische Hefte, A19: 51-75.

Mángano, M.G. and Buatois, L.A., 1997. Slope apron deposition in an Ordovician arc related setting: The Vuelta de Las Tolas Member (Suri Formation), Famatina Basin, northwest Argentina. Sedimentary Geology, 109: 155-180.

Mángano, M.G., Buatois, L.A.. and Aceñolaza, F.G., 1996. Icnología de ambientes marinos afectados por vulcanismo: La Formación Suri, Ordovícico del extremo norte de la sierra de Narváez, Sistema del Famatina. Asociación Paleontológica Argentina, Publicación Especial, 4: 69-88.

Mannheim, R., 1993a. Genese der vulkanite und subvulkanite des Altpaläozischen Famatina-Systems, NWArgentinien und seine geodynamische entwicklung. Muncher Geologische Hefte, 9: 130 pp.

Mannheim, R., 1993b. Génesis de las vulcanitas eopaleozoicoas del Sistema de Famatina, Noroeste de Argentina. 12º Congreso Geológico Argentino y 2º Congreso de Exploración de Hidrocarburos, No. 2 (Mendoza), Actas, 4: 147-155.

Mannheim, R. and Miller, H., 1996. Las rocas volcánicas y subvolcánicas eopaleozoicas del Sistema de Famatina. In: Aceñolaza, F.G., Miller, H. and Toselli, A. (Eds.), Geologia del Sistema del Famatina. Munchner Geologische Hefte, A19: 159-186.

Martino, R.D. and Astini, R.A., 1998. La faja milonítica del Cordón de La Cumbre, Sistema del Famatina, La Rioja, Argentina. IX Congreso Latinoamericano de Geología (Buenos Aires), Actas, 2: 37.

Moya, M.C., Malanca, S., Hongn, F.D. and Bahlburg, H., 1993. El Tremadoc temprano en la Puna Occidental argentina. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos (Mendoza), Actas, 2: 20-30.

Pankhurst, R.J., Rapela, C.W., Saavedra, J., Baldo, E., Dahlquist, J.A., Pascua, I. and Fanning, C.M. 1998. The Famatinian arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin. In:

Pankhurst, R.J. and Rapela, C.W. (Eds.), The Proto-Andean margin of Gondwana. Geological Society of London Special Publication, 142: 343-367.

Pankhurst, R.J., Rapela, C.W. and Fanning, C.M., 2000. Age and origin of coeval TTG, land S-type granites in the Famatinian belt of NW Argentina. Transactions of the Royal Society of Edinburgh Earth Sciences, 91: 151-168.

Penck, W., 1920. Der Sudrand der Puna de Atacama. Abh. Math. Phys. Klasse der Sachsischen Akad. der Wissenschften, Band 37(1). Leipzig.

Petersen, C.S. and Leanza, A.F., 1953. Elementos de Geología Aplicada. Editorial Nigar. Buenos Aires. 475 pp. Quenardelle, S.M. and Ramos, V.A., 1999. Ordovician western Sierras Pampeanas magmatic belt: Record of Precordillera accretion in Argentina. In: Ramos, V.A. and Keppie, J.D. (Eds.), Laurentia-Gondwana Connections before Pangea. Geological Society of America Special Paper 336: 63-86.

Ramos, V. A., 1999. Las provincias geológicas del territorio argentino. In: Caminos, R. (Ed.), Geología Argentina, Instituto de Geología y Recursos Minerales, Anales, 29: 41-96.

Ramos, V.R., 2000. The Southern Central Andes. In: Cordani, U.G., Milani, E.J., Thomaz Filho, A., And Campos, D.A. (Eds.), Tectonic Evolution of South America. 31st International Geological Congress, Rio de Janeiro: 561-604.

Rapalini, A.E., Astini, R.A. and Conti, C.M., 1999. Paleomagnetic constrains on the evolution of Paleozoic suspect terranes from South America. In: Ramos, V.A. & Keppie, J.D. (Eds.), Laurentia-Gondwana Connections before Pangea. Geological Society of America Special Paper, 336: 171-182.

Rapela, C.W., 2000. El Ordovícico de la región central del Famatina (provincia de La Rioja, Argentina): aspectos estratigráficos, geológicos y geotectónicos. Discusión. Revista de la Asociación Geológica Argentina, 55: 134-136.

Rapela, C.W., Coira, B., Toselli, A. and Saavedra, J., 1992. El magmatismo del Paleozoico inferior en el sudoeste de Gondwana. In: Gutierrez-Marco, J.C, Saavedra, J. and Rábano, I. (Eds), Paleozoico Inferior de Ibero-América: 21-68.

Rapela, C.W., Toselli, A., Heaman, L. and Saavedra, J., 1990. Granite plutonism of the Sierras Pampeanas; An inner cordilleran Paleozoic arc in the southern Andes. In: Kay, S.M. and Rapela, C.W. (Eds.), Plutonism from Antarctica to Alaska. Geological Society of America Special Paper, 242: 77-90.

Rapela, C.W., Pankhurst, R.J., Dahlquist, J. and Fanning, C.M., 1999. U-Pb Shrimp ages of Famatinian granites: new constrains on the timing, origin and tectonic setting of I- and S-type magmas in an ensialic arc. II South American Symposium on Isotope Geology (Córdoba), Actas: 264-267.

Rapela, C.W., Pankhurst, R.J., Baldo, E., Casquet, C., Galindo, C., Fanning, C.M. and Saavedra, J., 2001. Ordovician metamorphism in the Sierras Pampeanas: New U-Pb shrimp ages in central-east Valle Fértil and the Velasco batholith. 3º South American Symposium on Isotope Geology (Pucón), Extended Abstracts Volume (CD): 616-619.

Rubinstein, C.V. and Astini, R.A., 2000. Primer registro de palinoformos arenigianos en las formaciones Suri y Molles, región del Famatina provincia de La Rioja, Argentina. IX Simposio Argentino de Paleobotánica y Palinología (San Miguel de Tucumán), Resúmenes: 98.

Saavedra, J., Toselli, A.J., Rossi, J.N., Pellitero, E. and Durand, F.R., 1998. The Early Paleozoic magmatic record of the Famatina System: a review. In: Pankhurst, R.J. and Rapela, C.W. (Eds.), The Proto-Andean margin of Gondwana. Geological Society of London Special Publication, 142: 283-295.

Sánchez, T.M., 2001. Moluscos bivalvos de la Formación Molles (Arenigiano medio), sierra de Famatina, Argentina. Ameghiniana, 38: 185-193.

Sánchez, T.M. and Babin, C., 1993. Un insolite mollusque bivalve, Catamarcaia n.g. de l’Arenig (Ordovicien inférieur d’Argentine). Academie des Sciences, Comptes Rendus, 316: 265-271.

Sánchez, T.M. and Babin, C., 1994. Los géneros Redonia y Catamarcaia (Mollusca, Bivalvia) de la Formación Suri (Ordovícico Temprano, oeste de Argentina) y su interés paleobiogeográfico. Revista Española de Paleontología, 9: 81-90.

Toro, B.A., 1997. Asociaciones de graptolitos del Arenig de la localidad tipo de la Formación La Alumbrera, Sistema de Famatina, Argentina. Revista Española de Paleontología, 12: 43-51.

Toro, B.A., 1999. Early Ordovician (Arenig) graptolites of Northwestern Argentina (Cordillera Oriental and Famatina): Paleogeographic remarks. Acta Universitatis Carolinae-Geologica, 43: 437-440.

Toro, B.A. and Brussa, E.D., 1997. Graptolitos de la Formación Suri (Arenig) en el Sistema de Famatina, Argentina. Revista Española de Paleontología, 12: 175-184.

Tortello, F. and Esteban, S., 1995. Un trilobite agnóstido en el Ordovícico de la región de Bordo Atravesado (Cuesta de Miranda), Provincia de La Rioja, Argentina. VI Congreso Argentino de Paleontología y Bioestratigrafía (Trelew), Actas: 271-275.

Tortello, F. and Esteban, S., 1997. Significado bioestratigráfico de una asociación de trilobites del tramo basal de la Formación Volcancito (Sistema de Famatina, La Rioja, Argentina). Ameghiniana, 34: 265-270.

Tortello, F. and Esteban, S., 1999. La transición Cámbrico-Ordovícico en la Formación Volcancito (Sistema de Famatina, La Rioja, Argentina). Ameghiniana, 36: 371-387.

Toselli, A.J., 1992. El magmatismo del noroeste argentino. Reseña sistemática e interpretación. Serie Correlación Geológica 8, 243 pp.

Toselli, A.J., Rossi de Toselli, J.N., Pellitero, E. and Saavedra, J., 1993. El arco magmático granítico del Paleozoico inferior en el Sistema de Famatina, Argentina. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos (Mendoza), Actas, 4: 7-15.

Toselli, A.K., Saavedra Alonso, J., Pellitero, E., Rossi de Toselli, J.N., Aceñolaza, F.G. and Medina, M.E., 1990. Geoquímica y petrogénesis del vulcanismo ordovícico de la Formación Las Planchadas, Sistema de Famatina. Revista de la Asociación Geológica Argentina, 45: 313-322.

Toselli, A.J., Durand, F.R., Rossi de Toselli, J.N. and Saavedra, J., 1996. Esquema de evolución geotectónica y magmática eopaleozoica del Sistema de Famatina y sectores de Sierras Pampeanas. 13 Congreso Geológico Argentino y 3 Congreso de Exploración de Hidrocarburos (Buenos Aires), Actas, 5: 443-462.

Toselli, A.J., Weber-Diefenbach, K., Rossi de Toselli, J.N. and Miller, H., 1991. Interpretación genética de los granitoides del Paleozoico inferior Cerro Toro y Ñuñorco: Sistema de Famatina, Argentina. 6th Congreso Geológico Chileno (Santiago), Resúmenes Expandidos: 248-252.

Toselli, G.A., 1978. Edad de la Formación Negro Peinado, Sierra de Famatina, La Rioja. Revista de la Associación Geológica Argentina, 33: 86-89.

Turner, J.C.M., 1958. Estratigrafía de la Sierra de Narváez, Catamarca. Revista de la Asociación Geológica Argentina, 12: 18- 60. Turner, J.C.M., 1960. Estratigrafía del tramo medio de la Sierra del Famatina y adyacencias (La Rioja). Boletín de la Academia Nacional de Ciencias, 42: 77-126.

Turner, J.C.M., 1964. Descripción geológica de la hoja 15c, Vinchina. Boletín del Instituto Nacional de Geología y Minería , 100. 93 pp.

Turner, J.C.M., 1967. Descripción geológica de la Hoja 13b, Chaschuil, Provincia de Catamarca y La Rioja. Boletín Instituto Nacional de Geología y Minería, 106. 91 pp.

Vaccari, N.E. and Waisfeld, B.G., 1994. Nuevos trilobites de la Formación Suri (Ordovícico Temprano) en la región de Chaschuil, provincia de Catamarca. Implicancias bioestratigráficas. Ameghiniana, 31: 73-86.

Vaccari, N.E., Benedetto, J.L., Waisfeld, B.G. and Sánchez, T.M., 1993. La fauna de Neseuretus en la Formación Suri (oeste de Argentina): Edad y relaciones paleobiogeográficas. Revista Española de Paleontología, 8: 185-190.

 

Recibido: 25 de Febrero de 2003

Aceptado: 4 de Marzo de 2003