

Caracterización hidrogeológica del Valle del Rio Guanchín Chilecito, La Rioja, Argentina

Carlos M. FALCÓN^{1,2}, Luis R. HORTA^{1,4}, Ián FERNÁNDEZ^{1,3}, Gabriel G. MORENO¹ y Ana M. COMBINA¹

Abstract: HYDROGEOLOGICAL CHARACTERIZATION OF THE RIO GUANCHÍN, CHILECITO VALLEY, LA RIOJA, ARGENTINA. The present work analyzes the hydrogeological characteristics of the groundwater in the Guanchín River Valley, Province of La Rioja. For this, antecedents of the geological, hydrogeological and hydrochemical character were collected, which were complemented in the field with hydraulic determinations and sampling of groundwater. Chemical analyzes were interpreted to determine the characteristics and evolution of the valley waters. The information provided by deep perforations made it possible to determine the presence of important underground water reservoirs, especially in semi-confined and confined gravel-sandy levels, located between 80 and 170 m deep. The piezometric levels measured in the field vary between 30 and 50 m.b.b.p., the pumping flows between 60 and 160 m³/h and the specific yields between 2 and 6 m³/h/m. The waters have a dominant chemical composition of calcium bicarbonate to calcium sulfate, resulting in good to acceptable quality for irrigation and to a lesser extent for human consumption.

Resumen: El presente trabajo analiza las características hidrogeológicas de las aguas subterráneas en el Valle del Río Guanchín, Provincia de La Rioja. Para ello, se recopilaron antecedentes de la zona de carácter geológico, hidrogeológico e hidroquímico, los que se complementaron en el campo con determinaciones hidráulicas y muestreo de aguas subterráneas. Los análisis químicos se interpretaron para determinar las características y evolución de las aguas del valle. La información aportada por perforaciones profundas, posibilitó determinar la presencia de importantes reservorios de agua subterránea, especialmente en niveles gravo-arenosos semiconfinados y confinados, localizados entre los 80 y 170 m de profundidad. Los niveles piezométricos medidos en el campo varían entre 30 y 50 m.b.b.p., los caudales de bombeo entre 60 y 160 m³/h y los rendimientos específicos entre 2 y 6 m³/h/m. Las aguas presentan una composición química dominantemente bicarbonatada cálcica a sulfatada cálcica, resultando de buena a aceptable calidad para el riego y en menor medida para consumo humano.

Key words: Guanchín River Valley, Hydrogeology, Hydrochemistry, Exploitation.

Palabras clave: Valle del Río Guanchín, Hidrogeología, Hidroquímica, Explotación.

¹⁾ Universidad Nacional de La Rioja, Ciudad Universitaria de la Ciencia y de la Técnica. Av. Luis M. de la Fuente s/n (5300) La Rioja, Argentina. Camafa377@yahoo.com.ar

²⁾ Instituto Superior de Correlación Geológica (INSUGEO-CONICET) Av. Pte. Perón s/n (4107) Yerba Buena, Tucumán, Argentina.

³⁾ Instituto Provincial del Agua de La Rioja (IPALAR) Av. Luis Vernet 1300 (5300) La Rioja, Argentina.

⁴⁾ Instituto Superior de Estudios Sociales (ISES-CONICET). San Lorenzo 492 (4000). S.M. de Tucumán, Tucumán, Argentina.

Características generales

El valle del río Guanchín se ubica en el sector centro-norte de la provincia de La Rioja, en la primera estribación de los Nevados del Famatina. Tiene una superficie aproximada de 100 km² (Zambrano y Torres, 2000). Se accede al mismo desde la ciudad de Chilecito por la ruta provincial Nº 15, distante unos 17 km al este y que integra un sector productivo y turístico muy importante de la provincia de La Rioja. El valle constituye una depresión tectónica de rumbo N-NE - S-SW, limitada al oriente por los Bordos de Guanchín y Sañogasta (Figura 1), con alturas promedios de 2.000 m.s.n.m. y al occidente por el cordón montañoso del Cerro Blanco, con una altura de 5.671 m.s.n.m. El principal colector hídrico del valle es el río Guanchín, que recorre el valle homónimo en un trazado aproximadamente meridiano.

Las poblaciones más importantes del valle son Guanchín, ubicada en las coor-

denadas de 29°10'48"S y 67°38'35"O y con una población estable de 284 habitantes y Sañogasta, ubicada en las coordenadas de 29°05'42,72"S y 67°06'57,1"O, con una población estable de 2.330 habitantes (INDEC, 2010).

La vegetación natural del valle está poco estudiada, siendo caracterizada por Varela *et al.*, (2015) como de Monte Occidental, arbustiva y con regular tapiz herbáceo florístico.

Clima

El clima de la región es representativo de los valles y bolsones serranos de Sierras Pampeanas orientales, marcadamente continental, árido templado, con un promedio anual de precipitaciones de 200 a 300 mm y de régimen estival. Dado el exiguo volumen de precipitaciones, se produce un marcado déficit de agua durante todo el año.

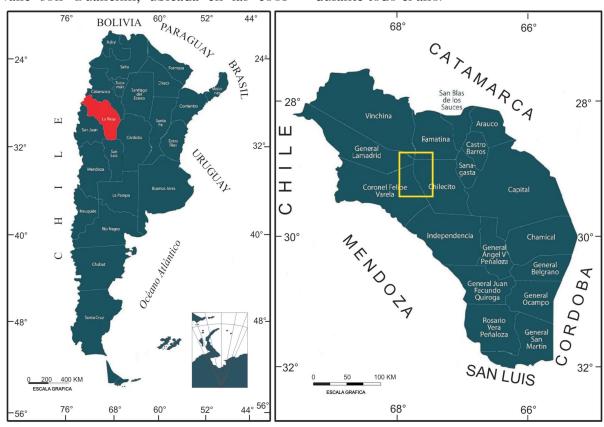


Figura 1. Mapa de ubicación del área de estudio./Figure 1. Location map of the study area.

	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Temperaturas mensuales (°C)	22,6	21,5	18,5	13,9	10,9	8	7,7	9,9	12,7	15,7	19,3	21,6
Temperatura mínima (°C)	15,1	13,7	11,3	6,2	3,3	0,4	-0,4	1,5	4,3	7,5	11,2	13,9
Temperatura máxima (°C)	30,1	29,3	25,8	21,7	18,5	15,6	15,8	18,3	21,1	23,9	27,5	29,4
Precipitación (mm)	48	50	34	5	3	1	3	3	3	8	18	29

Periodo considerado: 1982-2012

Tabla 1. Tabla climática para la localidad de Guanchín. Adaptada de: Climate-Data.Org. Clima: La Rioja./Table 1. Climatic table for the town of Guanchín. Adapted from: Climate-Data.Org. Climate: La Rioja.

Según la clasificación climática de Köppen (Torres Bruchman, 1978), el valle de Guanchín posee un tipo climático BWk (clima árido frío, con temperatura media anual inferior a 18°C). El invierno es riguroso, con temperaturas mínimas de junio a septiembre que alcanzan valores inferiores a 0°C y frecuentes nevadas asociadas (Rosa, 2000).

La localidad de Guanchín registrar una temperatura media anual de 15,2 °C, con máximas que superan los 30°C entre noviembre y enero y mínimas inferiores a los 3°C entre mayo y setiembre (Tabla 1), lo que destaca la gran amplitud térmica diurna que se produce en esta región. La precipitación anual es de 205 mm, con una media de 17,08 mm. El registro máximo

mensual corresponde a febrero con 50 mm y el mínimo a junio con apenas 1 mm (Climate-Data.Org. Clima: La Rioja). La media estacional máxima corresponde al verano con 132 mm y el 64,39% de la precipitación anual y el mínimo estacional corresponde al invierno con el 9 mm y el 4,39% de la precipitación anual (Figura 2). Los valores máximos de temperatura superan los 30°C entre noviembre y enero y los mínimos son inferiores a los 3°C entre mayo y setiembre (Tabla 1), lo que destaca la gran amplitud térmica diurna que se produce en esta región.

Se confeccionó el balance hídrico para la localidad de Guanchín (Figura 3), de cuyo análisis se desprende que, para una Temperatura media anual de 25°C y una Precipitación anual

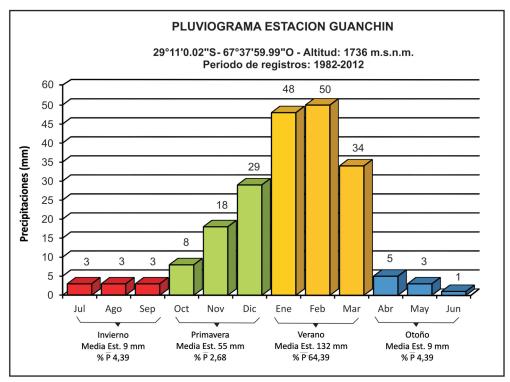


Figura 2. Pluviograma Estación Guanchín (elaboración propia). / Figure 2. Guanchín Station pluviogram (own elaboration).

FALCON et al. 8

ESTACION GUANCHIN 140 -EP 120 •ER P (mm) 100 80 mm 60 40 20 AGO SEP OCT NOV DIC ENE FEB MAR ABR MAY JUN JUL

Figura 3. Balance Hídrico para la localidad de Guanchín (elaboración propia)./Figure 3. Water Balance for the town of Guanchín (own elaboration).

de 205 mm, la Evapotranspiración Potencial estimada es de 731,1 mm/año y la Evapotranspiración Real es de 205 mm/año, con un Déficit hídrico de 526,1 mm/año. No se produce almacenaje de agua útil para el período considerado 1982-2012, debido a la extrema aridez del valle.

La temperatura media anual en la localidad de Sañogasta es de 15,2 °C y la precipitación anual de 108 mm, con una media de 10 mm. El registro máximo mensual corresponde a febrero con 65 mm y el mínimo a mayo con menos de 1 mm (1974/1980 (CRAS, 1981). La media estacional máxima corresponde al verano con 153 mm y el 69,32% de la precipitación anual y el mínimo estacional corresponde al otoño con 10,53 mm y el 4,77% de la precipitación anual (Figura 4).

Orografía y Recursos Hídricos Superficiales

La región comprende parte de las provincias geológicas de Sierras Pampeanas Orientales (Caminos, 1979) en la porción central del área y del Sistema del Famatina (Caminos, 1979) en el sector occidental. La estratigrafía aflorada se compone de rocas ígneas, metamórficas y sedimentarias del Precámbrico, Paleozoico y Cenozoico (Candiani *et al.*, 2008).

Los cordones montañosos que la conforman aportan a los valles el agua que posibilita la radicación del ser humano y la concreción de sus actividades, especialmente la agrícola, como los cultivos del valle de Antinaco-Los Colorados que se encuentra al este y de los valles intermontanos como el de Guanchín, al pie de su ladera oriental (Figura 1).

La oferta hídrica superficial del valle está formada principalmente por los cursos de agua que descienden del Cordón de Famatina, entre los que se destacan los ríos Pismanta (Figura 5) y Rodado de cuya confluencia se origina el río Guanchín, y los ríos Los Manzanos y Aguada de Cosme, afluentes del río Guanchín

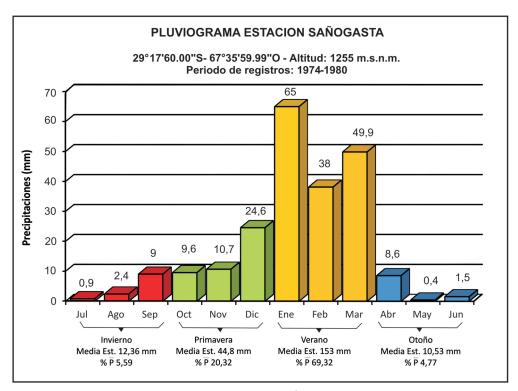


Figura 4. Pluviograma Estación Sañogasta (elaboración propia)./Figure 4. Sañogasta Station pluviogram (own elaboration).

(Lafón, 1970). Estos cursos abastecen de agua para la producción de cultivos bajo riego y el río Pismanta provee además, agua para consumo humano a la localidad de Guanchín (Boiri, 2008). En un estudio del Centro Regional de Aguas Subterráneas (CRAS) del año 1974 se menciona para el río Pismanta, en un punto de aforo en las coordenadas de 67° 39'09,91"

y 29° 09´10,87" aguas arriba de la localidad de Guanchín, un caudal que varía entre 60 y 100 l/seg.

Otra fuente de abastecimiento para riego es la que proviene de una vertiente ubicada sobre la margen izquierda de la quebrada Pismanta, que abastece a una finca denominada La Cañada (Rossa, 1997).

Figure 5. Panorámica del valle del Río Pismanta antes de la localidad de Guanchín (Fuente: https://mapio.net/pic/p-86198004/)./
Figure 5. Panoramic view of the Pismanta River valley before the town of Guanchín (Source: https://mapio.net/pic/p-86198004/).

Hidrogeología

A partir de la información aportada por 33 perforaciones profundas, se confeccionó un mapa de curvas de isopiezas, tomando como base imágenes de Google Earth (2019). El trazado de las curvas de isopiezas muestra que la circulación de las aguas subterráneas es en el sentido de la pendiente del valle, N-S en la parte alta y NNW-SSE en la parte media-baja, con valores que oscilan entre 1.800 y 1.550 m.s.n.m. en la zona de recarga en el área de Guanchín; 1.500 y 1.400 m.s.n.m. en la zona de conducción que coincide con el máximo desarrollo transversal del valle y 1.300 a 1.150 m.s.n.m. en la zona de descarga de Sañogasta. La presencia de la Loma del Pozo, en el extremo sur del valle, provoca su máximo estrechamiento. En este sector se comprobó la ocurrencia de manantiales y niveles de surgencia en pozos profundos, como es el caso de la perforación de Agrosuma 1 (Figura 6).

La ocurrencia de aguas superficiales está sujeta al volumen y estacionalidad de las precipitaciones. La recarga de acuíferos en los faldeos montañosos es limitada, aprovechando las presencias de fracturas y diaclasas y la permeabilidad incrementada en los materiales geológicos porosos y permeables que rellenan los valles y bolsones (Zambrano y Torres, 2000). En el piedemonte oriental del Cerro Alto Blanco al occidente del valle, se originan geoformas de abanicos aluviales interdigitados con depósitos de terrazas fluviales de los ríos Los Manzanos y Santa Victoria, entre otros (Abraham de Vázquez, 1978). Otra área de recarga se localiza en las bajadas cortas y abruptas de los Bordos de Guanchín y Sañogasta, al este del valle.

La descarga superficial se localiza en un angostamiento del valle al sur de la localidad de Sañogasta. En esta posición, el rio Guanchín de extensión meridiana, cambia su nombre por el de Trinidad y se desvía al este, construye un estrecho valle fluvial, intensamente explotado para agricultura.

El censo de 33 perforaciones permitió determinar la existencia de importantes reservorios de agua subterránea, especialmente en niveles gravo-arenosos semiconfinados y confinados (Tabla 2).

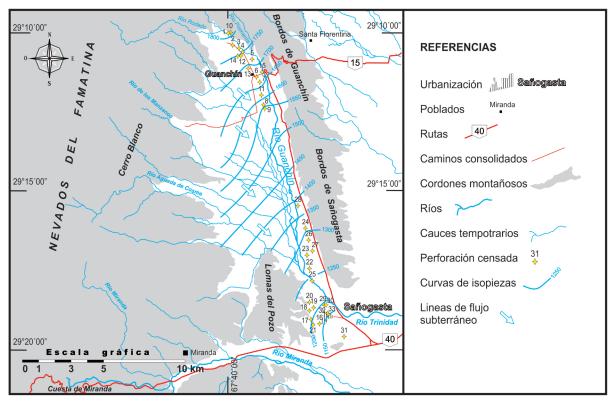


Figura 6. Mapa de Isopiezas del valle del río Guanchín (elaboración propia)./Figure 6. Isopiezas map of the Guanchín river valley (own elaboration).

Los horizontes permeables explotados se localizan entre los 40 y 170 m de profundidad. Las perforaciones están entubadas en 12"Ø y 10"Ø. Los caudales de bombeo varían entre 60 y 160 m3/h, con un máximo de 287 m3/h en el pozo de Jorajuria 2 y rendimientos específicos entre 2 y 6 m³/h/m. Al momento de realizar el presente estudio, no se contó con información referente a parámetros hidráulicos de los acuíferos en explotación en el valle.

Un análisis de la piezometría realizado en las perforaciones del valle del río Guanchín entre los años 2013 y 2018, permitió establecer que los descensos regionales como consecuencia del bombeo continuo de los pozos, varían entre 1 y 14 m (información propia).

Hidroquímica

Para la caracterización hidroquímica se utilizaron los resultados de los análisis químicos de las muestras obtenidas de 33 perforaciones profundas realizadas en diferentes sectores del valle del río Guanchín (Tablas 3 y 4). De sus resultados se aprecia que los valores de pH varían entre 7 y 8,44; ligeramente alcalinos. La composición iónica de las aguas se determinó a través del diagrama de Piper (1944) donde se representan las concentraciones de aniones y cationes expresadas en % de meq.L-1 (Figura 7).

Se interpreta una clara evolución y especiación química de las aguas en la dirección del flujo subterráneo, desde bicarbonatadas cálcicas-magnésicas a sulfatadas y/o cloruradas cálcicas. Esto puede ser resultado de la distancia al área de recarga, con aumento en la concentración de sulfatos y cloruros en detrimento de los carbonatos y/o también como producto de un mayor tiempo de interacción agua-roca. Los minerales que aportan sus sales en solución son Calcita > Anhidrita > Halita > Silvita.

En general, las aguas subterráneas son de buena calidad para el riego de olivos y nogal, y

ID	Localidad	Coorde	enadas	Cota	Año	Prof.	Prof.	Diám.	N.E.	N.D.	Qb	Qe
Pozo		Latitud	Longitud	(msnm)	Const.	Explor.	Entub.	Entub.	(msnm)	(msnm)	(m3/h)	(m3/h/m)
						(m)	(m)	(Ø)				
1	Guanchin 1	29°09′45,66"	67°39′44,1"	1837	2005	172	172	10	1808,40	1780,26	68	2,42
2	Guanchin 2	29°10′08,5"	67°39′33,4"	1818	2009	105	102	10	1776,17	1753,60	64	2,83
3	Guanchin 3	29°10′14,3"	67°39′18,4"	1795	2009	95	95	12	1756,10	1727,85	35	1,24
4	Guanchin 4	29°10′21,1"	67°39′09,2"	1780	2009	102	102	12	1749,00	1710,00	130	3,33
5	Guanchin 5	29°10′35,3"	67°38′46,4"	1749	2006	160	160	12	1731,26	1640,59	66	0,73
6	Guanchin 6	29°11′08,1"	67°38′36,24"	1709	S/D	172	172	12	1668,83	1621,25	190	3,99
7	Guanchin 7	29°11′17,7"	67°38′28,3"	1691	2006	158	158	12	1662,68	1628,80	73	2,15
8	Guanchin 8	29°12′00,1"	67°38′20,1"	1632	2010	170	170	12	1563,55	1523,80	190	4,72
9	Guanchin 9	29°12′06,8"	67°38′16,8"	1622	2010	180	180	10	1534,57	1466,77	140	2,06
10	Guanchin 10	29°09′44,8"	67°39′38,1"	1826	2013	172	168	12	1803,00	1772,27	54	1,76
11	Guanchin 11	29°11′41,8"	67°38′24,6"	1653	2013	178	174	12	1626,00	1553,75	140	1,94
12	Guanchin 12	29°10′28,6"	67°39′13,7"	1781	2013	173	157	12	1748,95	1697,55	130	2,53
13	Guanchin 13	29°10′52,02"	67°38′56,4"	1736	2013	172	168	12	1681,00	1635,70	95	2,09
14	Guanchin 14	29°10′28,9"	67°39′21,3"	1786	2015	174	164	12	1749,05	1674,44	64	0,86
15	Guanchin 15	29°10′53,04"	67°38′18,94"	1704	2016	160	159	12	1663,98	1611,90	64	1,23
16	Sañogasta 1	29°18′47,0"	67°36′09,0"	1218	2013	65	65	12	1198,36	1197,96	34	85
17	Sañogasta 2	29°18′38,8"	67°36′30,0"	1234	2013	68	68	12	1221,93	S/D	76	S/D
18	Sañogasta 3	29°18′22,6"	67°36′33,8"	1237	2013	92	91	12	1221,53	1219,00	88	34,78
19	Sañogasta 4	29°18′17,0"	67°36′22,9"	1238	2013	96	95	12	1223,93	1222,30	130	79,75
20	Sañogasta 5	29°18′06,8"	67°36′33,6"	1249	2013	82	79,5	12	1224,86	1222,05	124	44,12
21	Sañogasta 6	29°18′48,8"	67°36′24,7"	1228	2014	129	126	12	1218,80	S/D	112	S/D
22	Sañogasta 7	29°18′47,0"	67°36′09,0"	1301	2015	133	123	12	1271,75	1267,10	112	24,08
23	Sañogasta 8	29°18′38,8"	67°36′30,0"	1327	2015	153	142	12	1283,00	1279,15	108	28,05
24	Sañogasta 9	29°18′22,6"	67°36′33,8"	1374	2015	164	164	12	1301,65	1292,21	123	13,07
25	Sañogasta 10	29°18′17,0"	67°36′22,9"	1280	2015	90	87	12	1238,66	1227,73	145	13,27
26	Sañogasta 11	29°18′06,8"	67°36′33,6"	1354	2016	172	170	12	1295,07	1245,04	200	3,99
27	Sañogasta 12	29°16'32,1"	67°36'24,4"	1333	2016	65	68	12	1277,80	1245,94	211	16,18
28	Jorajuria 2	29°16'32,1"	67°36'24,4"	1424	2017	174	163	12	1403,00	1370,00	247	7,48
29	Lambrecht 1	29°18'13,2"	67°35'54,2"	1227	2015	67	67	12	S/D	S/D	S/D	S/D
30	Lambrecht 2	29°19'11,7"	67°35'09,2"	1228	2013	104	100	12	S/D	S/D	105	S/D
31	Collovati 1	29°18'29,8"	67°35'46,5"	1214	2014	100	97	12	S/D	S/D	178	S/D
32	Agrosuma 1	29°19'36,0"	67°35'45,0"	1201	2017	175	170	12	1165,40	1143,60	287	13,16
33	Merino	29°19'11,7"	67°35'09,2"	1170	2013	72	70	12	1116,00	1111,00	70	14

Tabla 2. Síntesis de perforaciones censadas en el valle del río Guanchín (elaboración propia)./**Table 2.** Synthesis of census drilling in the Guanchín river valley (own elaboration).

Nombre de	Coord	lenadas	ph	C.E. 25°C	Ca ²⁺	Mg ²⁺	Na⁺	K ⁺	HCO3	CO3 ²⁻	SO4 2-	CI ⁻
Pozo	Latitud	Longitud	upH	μS.cm ⁻¹	mg.L ⁻¹							
Guanchin 1	29°09′45,66"	67°39′44,10″	7,25	323	32	6,9	30	0,8	194	0	11	13
Guanchin 2	29°10′08,50″	67°39′33,40″	7,47	167	24	4,2	14	0,5	102	0	22	6
Guanchin 3	29°10′14,30″	67°39′18,40″	7,33	218	29	5,6	18	0,4	128	0	26	10
Guanchin 4	29°10′21,10″	67°39′09,20″	7,33	231	31	6,2	21	0,4	129	0	24	15
Guanchin 5	29°10′35,30″	67°38′46,40″	7,13	316	33	7,5	23	0,8	160	0	23	11
Guanchin 6	29°11′08,10″	67°38′36,24"	7,18	311	35	7	25	0,4	179	0	20	12
Guanchin 7	29°11′17,70″	67°38′28,30″	7,93	293	36	9	39	2,8	179	0	59	8
Guanchin 8	29°12′00,10″	67°38′20,10″	7,53	310	32	7	28	0,8	193	0	12	9
Guanchin 9	29°12′06,80″	67°38′16,80″	7,54	280	41	7,9	23	0,8	174	0	16	9
Guanchin 10	29°09′44,80″	67°39′38,10″	7,27	314	33	6,5	25	0,4	177	0	11	15
Guanchin 11	29°11′41,80″	67°38′24,60″	7,64	304	32	6,5	28	1,6	189	0	19	4
Guanchin 12	29°10′28,60″	67°39′13,70″	7,63	334	34	6,8	25	2	149	0	20	24
Guanchin 13	29°10′52,02"	67°38′56,40″	7,47	208	23	6	16	0,4	107	0	8	10
Guanchin 14	29°10′28,90″	67°39′21,30″	7,63	334	34	6,8	25	2	149	0	20	24
Guanchin 15	29°10′53,04"	67°38′18,94"	7,47	208	23	6	16	0,4	107	0	8	10

Tabla 3. Análisis químicos de las perforaciones en el área de Guanchín./Table 3. Chemical analysis of drilling in the Guanchín area.

Nombre de	Coord	lenadas	ph	C.E. 25°C	Ca2+	Mg2+	Na+	K+	HCO-3	CO3 2-	SO4 2-	CI -
Pozo	Latitud	Longitud	upH	μS.cm ⁻¹	mg.L-1							
Sañogasta 1	29°18′47,00″	67°36′09,00"	1218	1430	162	16,9	106	5,9	260	0	291	157
Sañogasta 2	29°18′38,80″	67°36′30,00"	1234	596	77	10,1	28	3,2	240	0	68	27
Sañogasta 3	29°18′22,60″	67°36′33,80″	1237	584	66	13,3	35	3,2	217	0	88	27
Sañogasta 4	29°18′17,00″	67°36′22,90″	1238	454	46	11,4	28	2,8	172	0	64	20
Sañogasta 5	29°18′07,00″	67°36′33,40″	1249	458	50	8,2	30	2,8	218	0	37	18
Sañogasta 6	29°18′49,10"	67°36′25,10"	1228	463	51	8,5	30	2	216	0	27	23
Sañogasta 7	29°17′04,30″	67°36′32,20"	1301	392	30	6,4	41	0,8	149	0	31	20
Sañogasta 8	29°16′39,70″	67°36′37,90″	1327	315	28	6,1	28	0,8	145	0	23	17
Sañogasta 9	29°15′49,70″	67°36′40,90″	1374	234	30	5,5	25	0,4	132	0	18	9
Sañogasta 10	29°17´27,25"	67°36′26,02"	1280	326	27	5,35	28	3	0	0	52	9
Sañogasta 11	29°16′11,70″	67°36′33,20″	1354	291	24	5	22	3	0	0	34	3
Sañogasta 12	29°16'32,10"	67°36'24,40"	1333	285	27	3	19	3	0	0	36	6
Jorajuria 2	29°14'58,61"	67°37'0,39"	1424	216	31,6	5	25	0,8	115	0	41	7
Lambrecht 1	29°18'13,20"	67°35'54,20"	1227	278	25,9	6,5	25	0,8	121	0	38	13
Lambrecht 2	29°19'11,70"	67°35'09,20"	1228	280	25,9	6,2	24,5	0,85	1,81	0	96	17
Collovati 1	29°18'29,80"	67°35'46,50"	1214	318	33	6	25	1	0	0	64	11
Agrosuma 1	29°19'36,0"	67°35'45,0"	1201	897	80	15	74	4	0	0	270	36
Merino	29°19'11,7"	67°35'09,2"	1170	546	59	8	47	2	0	0	104	17

Tabla 4. Análisis químicos de las perforaciones en el área de Sañogasta./Table 4. Chemical analysis of drilling in the Sañogasta area.

en menor medida para consumo humano (CAA, 1995-2007), pudiéndose observar en el diagrama de Wilcox (1955) una predominancia de las aguas de composición tipo C1S1 y C2S1, con baja peligrosidad de alcalinización y salinización del suelo.

Las conductividades eléctricas varían entre 167 y 600 μS.cm⁻¹, con registro de valores máximos de 897 μS.cm⁻¹ en el pozo 1 de Agrosuma y 1.430 μS.cm⁻¹ en el pozo 1 de Sañogasta (Tablas 3 y 4 y Figura 8).

Conclusiones

La oferta hídrica superficial del valle está formada principalmente por los cursos de agua que descienden de los Nevados del Famatina, de los cuales se posee escasa información de caudales y explotación a las que están sometidos.

El sistema de riego en las fincas se realiza mayoritariamente a través de acequias y en forma tradicional, si bien algunos productores utilizan riego presurizado para regadíos de olivos, nogal y frutales. El conocimiento sobre la distribución y comportamiento de las aguas subterráneas en el valle está en una etapa incipiente, sin embargo, su sector noroeste y sudeste ha sido explorado mediante numerosas perforaciones privadas destinadas a la agricultura.

El trazado de las curvas de isopiezas muestra una circulación de las aguas subterráneas en el sentido de la pendiente del valle, N-S en la parte alta y NNW-SSE en la parte me-

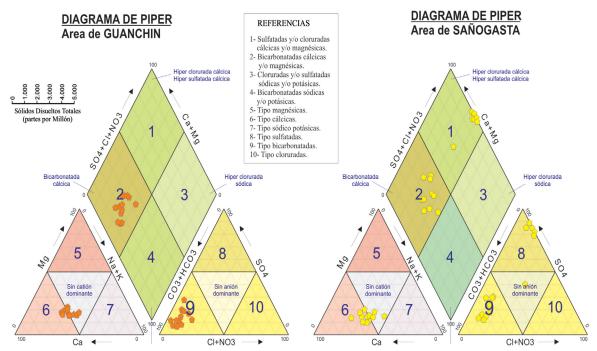
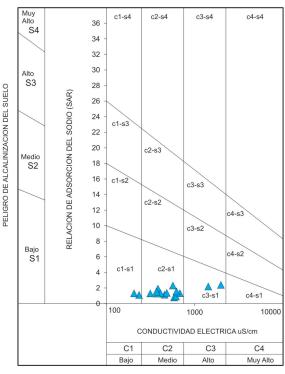



Figura 7. Composición iónica de las aguas utilizando el diagrama de Pipper - Area de Guanchín y Sañogasta (elaboración propia)./Figure 7. Ionic composition of the waters using the Pipper diagram - Guanchín y Sañogasta area (own elaboration).

CLASIFICACION DE LAS AGUAS PARA RIEGO Diagrama de WILCOX - AREA DE GUANCHIN

Muy Alto 36 S4 34 32 30 Alto S3 28 PELIGRO DE ALCALINIZACION DEL SUELO RELACION DE ADSORCION DEL SODIO (SAR) 26 24 c1-s3 22 20 c2-s3 Medio 18 S2 16 c1-s2 c3-s3 14 c2-s2 12 c4-s3 10 c3-s2 8 Bajo S1 4-s2 6 c1-s1 c2-s1 4 2 c3-s1 100 1000 10000 CONDUCTIVIDAD ELECTRICA uS/cm C1 C3 Bajo Medio Alto Muy Alto

CLASIFICACION DE LAS AGUAS PARA RIEGO Diagrama de WILCOX - AREA DE SAÑOGASTA

PELIGRO DE SALINIZACION DEL SUELO

PELIGRO DE SALINIZACION DEL SUELO

Figura 8. Clasificación de las aguas para riego utilizando el diagrama de Wilcox- Area de Guanchín y Sañogasta (elaboración propia). / Figure 8. Classification of water for irrigation using the Wilcox-Guanchín y Sañogasta area diagram (own elaboration).

dia-baja. La Loma del Pozo, en el extremo sur del valle, provoca su máximo estrechamiento, con la presencia de manantiales y niveles de surgencia en pozos profundos.

Las aguas subterráneas exhiben una evolución y especiación química en la dirección del

flujo subterráneo, desde bicarbonatadas cálcicas-magnésicas a sulfatadas y/o cloruradas cálcicas, siendo en general, de buena calidad para el riego de olivos y nogal y en menor medida para consumo humano.

La información climática e hidrogeológica disponible para el valle de Guanchín es escasa o inexistente. Por ello, y para poder establecer un modelo hidrogeológico que permita un desarrollo racional y sustentable de los recursos hídricos superficiales y subterráneos, es necesario profundizar en los aspectos hídricos mediante estudios de detalle, climáticos, geofísicos e hidrogeológicos.

Agradecimientos

Esta investigación fue desarrollada con fondos del Proyecto de Investigación 27/A699 "Estudios hidrogeotermales en la ciudad de La Rioja. Posibles aplicaciones de sus aguas termominerales de baja entalpía" de la Secretaria de Ciencia y Tecnología de la Universidad Nacional de La Rioja y contó con el apoyo de la Secretaría del Agua de la Provincia de La Rioja en su Dirección de Estudios Hidrogeológicos.

Referencias

- Abraham de Vázquez, E.M. 1978. *Geomorfología y biota del valle de Sanagasta* (Provincia de La Rioja). DESERTA, IADIZA, Mendoza, 5: 95-155.
- Caminos, R. 1979. Sierras Pampeanas Noroccidentales de Salta, Tucumán, Catamarca, La Rioja y San Juan. *Geología Regional Argentina*. Academia Nacional de Ciencias. Córdoba. V. 1: 225-291.
- Boiry, Lilian. 2008. Programa de Servicios Agrícolas Provinciales (PROSAP) IICA (OEA). Secretaría de Agricultura, Ganadería, Pesca y Alimentos (SAGPYA). Ministerio de Economía y Producción. R.A. ESTUDIO: 1. EE. 209. Programa de readecuación de los sistemas de riego superficiales. Informe final. Estudio de impacto ambiental y de intensificación productiva"- Provincia de La Rioja. 123 p. http://www.prosap.gov.ar/docs/La-Rioja-ReadecuacionRiego-EIAS.pdf
- Candiani, J.C., Astini, R., Dávila, F., Collo, G., Ezpeleta,

- M., Alasino, P., Dahlquist, J. y Carrizo, R. 2008. Hojas geológicas 2969-18 Famatina y 2969-24 Sañogasta, escala 1:100.000, provincia de La Rioja. Boletín 379, Instituto de Geología y Recursos Minerales. SEGEMAR.
- Centro Regional de Agua Subterránea. (CRAS). 1981. Ing. Luis I. Attala. Evaluación Hidrogeológica del valle de Antinaco Los Colorados - Programa Hidrogeoquímica - Periodo 1973/1974. Informe Inédito. Biblioteca del Instituto Provincial del Agua de La Rioja.
- Climate-Data.Org. Clima: La Rioja. https://es.climate-data.org/america-del-sur/argentina/la-rioja/guanchin-878339/
- Código Alimentario Argentino (CAA). 1995-2007. Ley 18284. Reg. alimentario Decreto 141/1953. Capitulo XII. Artículos: 982 al 1079 Bebidas hídricas, agua y agua gasificada. Agua Potable. Actualizado al 11/2019. Artículo 982. Resolución Conjunta SRYGR y SAB N° 34/2019. https://www.argentina.gob.ar/sites/default/files/caa_capitulo_xii_aguas_actualiz_2019-11.pdf
- Google Earth. 2020. Image©2020. Maxar Technologies©2020 Google. Fecha de imagen 05/12/2019.
- Instituto Nacional de Estadísticas y Censos de la República Argentina, INDEC. 2010. Encuesta Nacional de Población y Viviendas. https://www.indec.gov.ar/Secretaría de Minería de la Nación Argentina. Buenos Aires.
- Lafón, E.H. 1970. Manual de Historia y Geografía de La Rioja. Vol. II Geografía, La Rioja. Compañía Editora Riojana. 340 p.
- Piper, A.M. 1944. A graphic procedure in the geochemical interpretation of water-analyses. *Transactions American of the Geophysical Unión*. 25: 914-923.
- Rosa, H. 2000. Clima de la Provincia de La Rioja. En Abraham, E.M. y Rodríguez Martínez, F. (Ed.). Argentina: recursos y problemas ambientales de la zona árida. Provincias de Mendoza, San Juan y La Rioja. Junta de gobierno de Andalucía, Universidades y Centros de Investigación de la Región Andina Argentina, Mendoza. http://www.cricyt.edu.ar/ladyot/catalogo/cdandes/cap15.htm#inhalt.
- Rossa, J.A. 1997. Proyecto de sistemas de riego para el departamento de Famatina y otros distritos seleccionados. Biblioteca del CFI. 4 Tomos en 6 volúmenes + 5 disq. Santa Fe.
- Torres Bruchman, E. 1978. Las Clasificaciones Climáticas de Köppen y Thornthwaite. Serie didáctica 48. Facultad de Agronomía y Zootecnia. UNT. 27 p. San Miguel de Tucumán.
- Varela, O., Parrado, F. y Buedo S.E. 2015. Ecología y Fitogeografía. Diversidad de plantas vasculares del valle Antinaco-Los Colorados, La Rioja, Argentina. Ecología y Fitogeografía. *Boletín de la Sociedad*

Argentina de Botánica. Vol. 50 (3). Córdoba.

Wilcox, L.V. 1955. Classification and use of irrigation water.

U.S. Departament of Agriculture. Circular No. 969. 19 p. USA.

Zambrano, J. y Torres, E. 2000. Hidrogeología de la Provincia de La Rioja. En Abraham, E.M. y Rodríguez Martínez, F. (Ed.). Argentina: recursos y pro-

Recibido: 08 de Abril del 2020 Aceptado: 29 de Mayo del 2020 blemas ambientales de la zona árida. Provincias de Mendoza, San Juan y La Rioja. Junta de Gobierno de Andalucía, Universidades y Centros de Investigación de la Región Andina Argentina, Mendoza. http://www.cricyt.edu.ar/ladyot/catalogo/cdandes/cap18.htm#inhalt.